首页 > 代码库 > cf837E(xjb)

cf837E(xjb)

题目链接:http://codeforces.com/problemset/problem/837/E

 

题意:f(a, 0) = 0 ,

      f(a, b) = 1 + f(a, b - gcd(a, b))

      给出 a, b,求 f(a, b).

 

思路:对于当前 a, b,若 gcd(a, b) = c,那么 b = k * c, b 每次减少 c 直到 gcd(a, b) != c, 即 k 每次减小 1, 直至 k 与 a 存在其他因子 d, 即:gcd(a‘, b‘) = d, 那么 b‘ = k‘ * d.当前对答案的贡献则为 k - k‘, 依次类推下去即可.

 

代码:

技术分享
 1 #include <iostream>
 2 #include <math.h>
 3 #define ll long long
 4 using namespace std;
 5 
 6 const ll inf = 0x3f3f3f3f3f3f3f3f;
 7 
 8 ll gcd(ll a, ll b){
 9     return b == 0 ? a : gcd(b, a % b);
10 }
11 
12 int main(void){
13     ll x, y, sol = 0;
14     cin >> x >> y;
15     while(y >= 1){
16         ll gg = gcd(x, y);
17         y /= gg;
18         x /= gg; //注意x中的因子gg也要去掉,不然会影响后面步骤
19         ll cnt = inf, gel = x;
20         for(ll i = 2; i * i <= gel; i++){//将当前x质因分解并找出y模x的质因子中最小值作为当前轮对答案的贡献
21             if(gel % i == 0){
22                 cnt = min(cnt, y % i);
23                 while(gel % i == 0){
24                     gel /= i;
25                 }
26             }
27         }
28         if(gel > 1) cnt = min(cnt, y % gel);
29         sol += cnt;
30         y -= cnt;
31     }
32     cout << sol + y << endl;
33     return 0;
34 }
View Code

 

cf837E(xjb)