首页 > 代码库 > HDU 4282 A very hard mathematic problem
HDU 4282 A very hard mathematic problem
转载请注明出处:http://blog.csdn.net/u012860063?viewmode=contents
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4287
Problem Description
Haoren is very good at solving mathematic problems. Today he is working a problem like this:
Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
X^Z + Y^Z + XYZ = K
where K is another given integer.
Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
Now, it’s your turn.
Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
X^Z + Y^Z + XYZ = K
where K is another given integer.
Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
Now, it’s your turn.
Input
There are multiple test cases.
For each case, there is only one integer K (0 < K < 2^31) in a line.
K = 0 implies the end of input.
For each case, there is only one integer K (0 < K < 2^31) in a line.
K = 0 implies the end of input.
Output
Output the total number of solutions in a line for each test case.
Sample Input
9 53 6 0
Sample Output
1 1 0Hint9 = 1^2 + 2^2 + 1 * 2 * 2 53 = 2^3 + 3^3 + 2 * 3 * 3
Source
2012 ACM/ICPC Asia Regional Tianjin Online
Recommend
liuyiding | We have carefully selected several similar problems for you:4267 4268 4269 4270 4271
题意:
给你一个式子x^z + y^z + x*y*z = k,k 为给定的某个int 范围内的数字。
求共有多少组关于x,y,z 的解。(0< x < y,z > 1)
解题思路:
显然当z 越大的时候x,y 的值越小。
由于y 最小等于2,所以有2^z < k,又k < 2^31,所以有z < 31。
1、首先考虑当z=2 的时候,式子左边可以化为(x+y)^2 = k 的形式。
所以当k 是完全平方数的时候,(x,y) 才有可能有解。
假如m^2 = k ,问题就相当于求x+y = m (x < y) 的解的组数。
容易得出ans=(m-1)/2;
2、然后考虑当z>=3 的时候。
枚举就好!
代码如下:
#include<cstdio> #include<cmath> #define LL __int64 LL POW(LL x , int z) { LL ans = 1; for(int i = 1 ; i <= z ;i++) { ans*=x; } return ans; } int main() { LL x,y,tx,ty,ans; int z,k; while(~scanf("%d",&k) && k) { ans = 0; LL tmp = (int)sqrt(k*1.0); if(tmp *tmp == k)//若n是一个完全平方数 ans+=(tmp-1)/2; for( z = 3 ; z < 31 ; z++)//z最大为30,开始枚举 { for(LL x = 1 ; ; x++) { tx = POW(x,z); if(tx >= k/2) break; for(LL y = x+1; ; y++) { ty = POW(y,z); if(tx+ty+x*y*z > k) break; else if(tx+ty+x*y*z == k) { ans++; break; } } } } printf("%I64d\n",ans); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。