首页 > 代码库 > Best Time to Buy and Sell Stock III Leetcode Python

Best Time to Buy and Sell Stock III Leetcode Python

Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again). 这道题目可以采用两种方法来解,第一种解法是 分别从左往右扫描一次 以及从右往左扫描一次依次把得到的最大的maxpro 放到数组里面 stack1 stack2 最后求解的时候 将stack1[i]+stack2[i+1] 得到的最大值就是最大值。代码如下

class Solution:
    # @param prices, a list of integer
    # @return an integer
    def maxProfit(self, prices):
        if len(prices)==0:
            return 0
        stack1=[]
        stack2=[]
        lowprice=prices[0]
        maxpro=0
        highprice=prices[-1]
        for index in range(len(prices)):
            lowprice=min(lowprice,prices[index])
            maxpro=max(maxpro,prices[index]-lowprice)
            stack1.append(maxpro)
        maxpro=0
        for index in reversed(range(len(prices))):
            highprice=max(highprice,prices[index])
            maxpro=max(maxpro,highprice-prices[index])
            stack2.insert(0,maxpro)
        
        for index in range(len(prices)-1):
            maxpro=max(maxpro,stack1[index]+stack2[index+1])
        return maxpro
            

第二种做法是用动态规划的方法解的

i表示第i天 j表示一共可以进行j次交易

全局最优的表达式为g[j]=max(g[j],l[j])

局部最优的表达为当前最优和 前一个全局最优加上当前可以挣的钱的最大 表达式为

l[j]=max(g[j-1]+max(dif,0),l[j]+dif)

具体代码如下:

class Solution:
    # @param prices, a list of integer
    # @return an integer
    def maxProfit(self, prices):
        g=[0,0,0]
        l=[0,0,0]
        for i in range(len(prices)-1):
            dif=prices[i+1]-prices[i]
            for j in reversed(range(1,3)):
                l[j]=max(g[j-1]+max(dif,0),l[j]+dif)
                g[j]=max(l[j],g[j])
        return g[2]


Best Time to Buy and Sell Stock III Leetcode Python