首页 > 代码库 > POJ 3525 二分+半平面交
POJ 3525 二分+半平面交
Time Limit: 5000MS | Memory Limit: 65536K | |||
Total Submissions: 3812 | Accepted: 1779 | Special Judge |
Description
The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.
In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.
Input
The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
n | ||
x1 | y1 | |
? | ||
xn | yn |
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.
n in the first line is the number of vertices of the polygon, satisfying 3 ≤n ≤ 100. Subsequent n lines are the x- and y-coordinates of then vertices. Line segments (xi, yi)–(xi+1,yi+1) (1 ≤ i ≤ n ? 1) and the line segment (xn,yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.
You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.
The last dataset is followed by a line containing a single zero.
Output
For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10?5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.
Sample Input
4 0 0 10000 0 10000 10000 0 10000 3 0 0 10000 0 7000 1000 6 0 40 100 20 250 40 250 70 100 90 0 70 3 0 0 10000 10000 5000 5001 0
Sample Output
5000.000000 494.233641 34.542948 0.353553
在大海的中央,给定一个n边凸多边形的岛,求岛上距离大海最远的点,输出它到大海的距离。
二分距离,然后把多边形向内部收缩,判断半平面是否存在。
代码:
/* *********************************************** Author :_rabbit Created Time :2014/5/4 15:03:55 File Name :20.cpp ************************************************ */ #pragma comment(linker, "/STACK:102400000,102400000") #include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <string> #include <time.h> #include <math.h> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define INF 10000000 #define eps 1e-8 #define pi acos(-1.0) typedef long long ll; int dcmp(double x){ if(fabs(x)<eps)return 0; return x>0?1:-1; } struct Point{ double x,y; Point(double _x=0,double _y=0){ x=_x;y=_y; } }; Point operator + (const Point &a,const Point &b){ return Point(a.x+b.x,a.y+b.y); } Point operator - (const Point &a,const Point &b){ return Point(a.x-b.x,a.y-b.y); } Point operator * (const Point &a,const double &p){ return Point(a.x*p,a.y*p); } Point operator / (const Point &a,const double &p){ return Point(a.x/p,a.y/p); } bool operator < (const Point &a,const Point &b){ return a.x<b.x||(a.x==b.x&&a.y<b.y); } bool operator == (const Point &a,const Point &b){ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } double Dot(Point a,Point b){ return a.x*b.x+a.y*b.y; } double Length(Point a){ return sqrt(Dot(a,a)); } double Angle(Point a,Point b){ return acos(Dot(a,b)/Length(a)/Length(b)); } double angle(Point a){ return atan2(a.y,a.x); } double Cross(Point a,Point b){ return a.x*b.y-a.y*b.x; } Point vecunit(Point a){ return a/Length(a); } Point Normal(Point a){ return Point(-a.y,a.x)/Length(a); } Point Rotate(Point a,double rad){ return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); } double Area2(Point a,Point b,Point c){ return Length(Cross(b-a,c-a)); } struct Line{ Point p,v; double ang; Line(){}; Line(Point p,Point v):p(p),v(v){ ang=atan2(v.y,v.x); } bool operator < (const Line &L) const { return ang<L.ang; } }; bool OnLeft(const Line &L,const Point &p){ return dcmp(Cross(L.v,p-L.p))>=0; } Point GetLineIntersection(Point p,Point v,Point q,Point w){ Point u=p-q; double t=Cross(w,u)/Cross(v,w); return p+v*t; } Point GetLineIntersection(Line a,Line b){ return GetLineIntersection(a.p,a.v,b.p,b.v); } vector<Point> HPI(vector<Line> L){ int n=L.size(); sort(L.begin(),L.end());//将所有半平面按照极角排序。 /*for(int i=0;i<n;i++){ cout<<"han "<<i<<" "; printf("%.2lf %.2lf %.2lf %.2lf %.2lf\n",L[i].p.x,L[i].p.y,L[i].v.x,L[i].v.y,L[i].ang); }*/ int first,last; vector<Point> p(n); vector<Line> q(n); vector<Point> ans; q[first=last=0]=L[0]; for(int i=1;i<n;i++){ while(first<last&&!OnLeft(L[i],p[last-1]))last--;//删除顶部的半平面 while(first<last&&!OnLeft(L[i],p[first]))first++;//删除底部的半平面 q[++last]=L[i];//将当前的半平面假如双端队列顶部。 if(fabs(Cross(q[last].v,q[last-1].v))<eps){//对于极角相同的,选择性保留一个。 last--; if(OnLeft(q[last],L[i].p))q[last]=L[i]; } if(first<last)p[last-1]=GetLineIntersection(q[last-1],q[last]);//计算队列顶部半平面交点。 } while(first<last&&!OnLeft(q[first],p[last-1]))last--;//删除队列顶部的无用半平面。 if(last-first<=1)return ans;//半平面退化 p[last]=GetLineIntersection(q[last],q[first]);//计算队列顶部与首部的交点。 for(int i=first;i<=last;i++)ans.push_back(p[i]);//将队列中的点复制。 return ans; } double PolyArea(vector<Point> p){ int n=p.size(); double ans=0; for(int i=1;i<n-1;i++) ans+=Cross(p[i]-p[0],p[i+1]-p[0]); return fabs(ans)/2; } Point pp[200],v[200],v2[200]; int main() { //freopen("data.in","r",stdin); //freopen("data.out","w",stdout); int n; int cc=0; while(~scanf("%d",&n)&&n){ for(int i=0;i<n;i++)scanf("%lf%lf",&pp[i].x,&pp[i].y); for(int i=0;i<n;i++){ v[i]=pp[(i+1)%n]-pp[i]; v2[i]=Normal(v[i]); } double left=0,right=20000; while(right-left>1e-6){ vector<Line> L; double mid=(left+right)/2; for(int i=0;i<n;i++) L.push_back(Line(pp[i]+v2[i]*mid,v[i])); vector<Point> ans=HPI(L); if(!ans.size())right=mid; else left=mid; //cout<<"han "<<ans.size()<<" "<<mid<<endl; } printf("%.6lf\n",left); } return 0; }