首页 > 代码库 > 【目标识别】深度学习进行目标识别的资源列表

【目标识别】深度学习进行目标识别的资源列表

【目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN、YOLO、DenseBox、SSD、Inside-Outside Net、G-CNN等。
Papers

Deep Neural Networks for Object Detection
  • paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

[td]

method
ILSVRC 2013 mAP
OverFeat
24.3%
  • intro: A deep version of the sliding window method, predicts bounding box directly from each location of the topmost feature map after knowing the confidences of the underlying object categories.
  • arXiv: http://arxiv.org/abs/1312.6229
  • code: https://github.com/sermanet/OverFeat

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation(R-CNN)

[td]

method
VOC 2007 mAP
VOC 2010 mAP
VOC 2012 mAP
ILSVRC 2013 mAP
R-CNN,AlexNet
54.2%
50.2%
49.6%
 
R-CNN,bbox reg,AlexNet
58.5%
53.7%
53.3%
31.4%
R-CNN,bbox reg,ZFNet
59.2%
     
R-CNN,VGG-Net
62.2%
     
R-CNN,bbox reg,VGG-Net
66.0%
     
  • arXiv: http://arxiv.org/abs/1311.2524
  • slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
  • slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
  • code: https://github.com/rbgirshick/rcnn
  • notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
  • caffe-pr(“Make R-CNN the Caffe detection example”):https://github.com/BVLC/caffe/pull/482

MultiBox

Scalable Object Detection using Deep Neural Networks (MultiBox)
  • intro: Train a CNN to predict Region of Interest.
  • arXiv: http://arxiv.org/abs/1312.2249
  • code: https://github.com/google/multibox

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

[td]

method
VOC 2007 mAP
ILSVRC 2013 mAP
SPP_net(ZF-5),1-model
54.2%
31.84%
SPP_net(ZF-5),2-model
60.9%
 
SPP_net(ZF-5),6-model   35.11%
  • arXiv: http://arxiv.org/abs/1406.4729
  • code: https://github.com/ShaoqingRen/SPP_net
  • notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/
Learning Rich Features from RGB-D Images for Object Detection and Segmentation
  • arxiv: http://arxiv.org/abs/1407.5736
Scalable, High-Quality Object Detection
  • arXiv: http://arxiv.org/abs/1412.1441
  • code: https://github.com/google/multibox

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

[td]

method
VOC 2007 mAP
ILSVRC 2013 mAP
DeepID-Net
64.1%
50.3%
  • arXiv: http://arxiv.org/abs/1412.5661
Object Detection Networks on Convolutional Feature Maps

[td]

method
Trained on
mAP
NoC
07+12
68.8%
NoC,bb
07+12
71.6%
NoC,+EB
07+12
71.8%
NoC,+EB,bb
07+12
73.3%
  • arXiv: http://arxiv.org/abs/1504.06066
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

[td]

Model
BBoxReg?
VOC 2007 mAP(IoU>0.5)
R-CNN(AlexNet)
No
54.2%
R-CNN(VGG)
No
60.6%
+StructObj
No
61.2%
+StructObj-FT
No
62.3%
+FGS
No
64.8%
+StructObj+FGS
No
65.9%
+StructObj-FT+FGS
No
66.5%

[td]

Model
BBoxReg?
VOC 2007 mAP(IoU>0.5)
R-CNN(AlexNet)
Yes
58.5%
R-CNN(VGG)
Yes
65.4%
+StructObj
Yes
66.6%
+StructObj-FT
Yes
66.9%
+FGS
Yes
67.2%
+StructObj+FGS
Yes
68.5%
+StructObj-FT+FGS
Yes
68.4%
  • arXiv: http://arxiv.org/abs/1504.03293
  • slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
  • code: https://github.com/YutingZhang/fgs-obj

Fast R-CNN

Fast R-CNN

[td]

method
data
VOC 2007 mAP
FRCN,VGG16
07
66.9%
FRCN,VGG16
07+12
70.0%

[td]

method
data
VOC 2010 mAP
FRCN,VGG16
12
66.1%
FRCN,VGG16
07++12
68.8%

[td]

method
data
VOC 2012 mAP
FRCN,VGG16
12
65.7%
FRCN,VGG16
07++12
68.4%
  • arXiv: http://arxiv.org/abs/1504.08083
  • slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
  • github: https://github.com/rbgirshick/fast-rcnn
  • webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
  • notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
  • notes: http://blog.csdn.net/linj_m/article/details/48930179
  • github(“Train Fast-RCNN on Another Dataset”): https://github.com/zeyuanxy/fast-rcnn/tree/master/help/train

DeepBox

DeepBox: Learning Objectness with Convolutional Networks
  • arXiv: http://arxiv.org/abs/1505.02146
  • github: https://github.com/weichengkuo/DeepBox

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model (MR-CNN)

[td]

Model
Trained on
VOC 2007 mAP
VGG-net
07+12
78.2%
VGG-net
07
74.9%

[td]

Model
Trained on
VOC 2012 mAP
VGG-net
07+12
73.9%
VGG-net
12
70.7%
  • arXiv: http://arxiv.org/abs/1505.01749
  • code: “Pdf and code will appear here shortly – stay tuned” 
    http://imagine.enpc.fr/~komodakn/
  • notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/
  • notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(NIPS 2015)

[td]

  training data
test data
mAP
time/img
Faster RCNN, VGG-16
07
VOC 2007 test
69.9%
198ms
Faster RCNN, VGG-16
07+12
VOC 2007 test
73.2%
198ms
Faster RCNN, VGG-16
12
VOC 2007 test
67.0%
198ms
Faster RCNN, VGG-16
07++12
VOC 2007 test
70.4%
198ms
  • arXiv: http://arxiv.org/abs/1506.01497
  • github: https://github.com/ShaoqingRen/faster_rcnn
  • github: https://github.com/rbgirshick/py-faster-rcnn

YOLO

You Only Look Once: Unified, Real-Time Object Detection(YOLO)
  • intro: YOLO uses the whole topmost feature map to predict both confidences for multiple categories and bounding boxes (which are shared for these categories).
  • arXiv: http://arxiv.org/abs/1506.02640
  • code: http://pjreddie.com/darknet/yolo/
  • github: https://github.com/pjreddie/darknet
  • reddit:https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
  • github(YOLO_tensorflow): https://github.com/gliese581gg/YOLO_tensorflow
R-CNN minus R
  • arXiv: http://arxiv.org/abs/1506.06981

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection
  • arXiv: http://arxiv.org/abs/1509.04874
  • demo: http://pan.baidu.com/s/1mgoWWsS
  • KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php

SSD

SSD: Single Shot MultiBox Detector
技术分享
  • arXiv: http://arxiv.org/abs/1512.02325
  • github: https://github.com/weiliu89/caffe/tree/ssd
  • video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973

Inside-Outside Net

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
Detection results on VOC 2007 test:

[td]

Method
R
S
W
D
Train
mAP
FRCN
       
07+12
70.0
RPN
       
07+12
73.2
MR-CNN
   
  07+12
78.2
ION
       
07+12
74.6
ION
      07+12
75.6
ION
   
07+12+S
76.5
ION
  07+12+S
78.5
ION
07+12+S
79.2
Detection results on VOC 2012 test:

[td]

Method
R
S
W
D
Train
mAP
FRCN
       
07++12
68.4
RPN
       
07++12
70.4
FRCN+YOLO
       
07++12
70.4
HyperNet
       
07++12
71.4
MR-CNN
   
  07+12
73.9
ION
07+12+S
76.4
  • intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
  • arxiv: http://arxiv.org/abs/1512.04143
  • slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf
  • coco-leaderboard: http://mscoco.org/dataset/#detections-leaderboard

G-CNN

G-CNN: an Iterative Grid Based Object Detector
  • arxiv: http://arxiv.org/abs/1512.07729
Learning Deep Features for Discriminative Localization
  • homepage: http://cnnlocalization.csail.mit.edu/
  • arxiv: http://arxiv.org/abs/1512.04150
  • github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
Factors in Finetuning Deep Model for object detection
  • arxiv: http://arxiv.org/abs/1601.05150
We don’t need no bounding-boxes: Training object class detectors using only human verification
  • arxiv: http://arxiv.org/abs/1602.08405
A MultiPath Network for Object Detection
  • arxiv: http://arxiv.org/abs/1604.02135
Beyond Bounding Boxes: Precise Localization of Objects in Images (PhD Thesis)
  • homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
  • phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
  • github(“SDS using hypercolumns”): https://github.com/bharath272/sds
T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
  • arxiv: http://arxiv.org/abs/1604.02532
  • github: https://github.com/myfavouritekk/T-CNN
Training Region-based Object Detectors with Online Hard Example Mining
  • arxiv: http://arxiv.org/abs/1604.03540

Specific Object Deteciton

End-to-end people detection in crowded scenes
技术分享
  • arXiv: http://arxiv.org/abs/1506.04878
  • code: https://github.com/Russell91/reinspect
  • ipn:http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb

Tutorials

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection
  • slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

Codes

TensorBox: a simple framework for training neural networks to detect objects in images
  • intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
  • github: https://github.com/Russell91/TensorBox
Object detection in torch: Implementation of some object detection frameworks in torch
  • github: https://github.com/fmassa/object-detection.torch

Blogs

Convolutional Neural Networks for Object Detection
http://rnd.azoft.com/convolutional-neural-networks-object-detection/

【目标识别】深度学习进行目标识别的资源列表