首页 > 代码库 > POJ 3241 Object Clustering(Manhattan MST)

POJ 3241 Object Clustering(Manhattan MST)

题目链接:http://poj.org/problem?id=3241

Description

We have (N ≤ 10000) objects, and wish to classify them into several groups by judgement of their resemblance. To simply the model, each object has 2 indexes a and b (ab ≤ 500). The resemblance of object i and object j is defined by dij = |a- aj| + |b- bj|, and then we say i is dij resemble to j. Now we want to find the minimum value of X, so that we can classify the N objects into K (< N) groups, and in each group, one object is at most X resemble to another object in the same group, i.e, for every object i, if i is not the only member of the group, then there exists one object j (i ≠ j) in the same group that satisfies dij ≤ X

Input

The first line contains two integers N and K. The following N lines each contain two integers a and b, which describe a object.

Output

A single line contains the minimum X.

 

题目大意:给n个点,两个点之间的距离为曼哈顿距离。要求把n个点分成k份,每份构成一个连通的子图(树),要求最大边最小。求最大边的最小值。

思路:实际上就是求平面上曼哈顿距离的最小生成树的第k大边(即减掉最大的k-1条边构成k份)。

资料:曼哈顿MST。复杂度O(nlogn)。

http://wenku.baidu.com/view/1e4878196bd97f192279e941.html

http://blog.csdn.net/huzecong/article/details/8576908

 

代码(79MS):

技术分享
  1 #include <cstdio>  2 #include <iostream>  3 #include <cstring>  4 #include <algorithm>  5 using namespace std;  6 typedef long long LL;  7 #define FOR(i, n) for(int i = 0; i < n; ++i)  8   9 namespace Bilibili { 10     const int MAXV = 10010; 11     const int MAXE = MAXV * 4; 12  13     struct Edge { 14         int u, v, cost; 15         Edge(int u = 0, int v = 0, int cost = 0): 16             u(u), v(v), cost(cost) {} 17         bool operator < (const Edge &rhs) const { 18             return cost < rhs.cost; 19         } 20     }; 21  22     struct Point { 23         int x, y, id; 24         void read(int i) { 25             id = i; 26             scanf("%d%d", &x, &y); 27         } 28         bool operator < (const Point &rhs) const { 29             if(x != rhs.x) return x < rhs.x; 30             return y < rhs.y; 31         } 32     }; 33  34     Point p[MAXV]; 35     Edge edge[MAXE]; 36     int x_plus_y[MAXV], y_sub_x[MAXV]; 37     int n, k, ecnt; 38  39     int hash[MAXV], hcnt; 40  41     void get_y_sub_x() { 42         for(int i = 0; i < n; ++i) hash[i] = y_sub_x[i] = p[i].y - p[i].x; 43         sort(hash, hash + n); 44         hcnt = unique(hash, hash + n) - hash; 45         for(int i = 0; i < n; ++i) y_sub_x[i] = lower_bound(hash, hash + hcnt, y_sub_x[i]) - hash + 1; 46     } 47  48     void get_x_plus_y() { 49         for(int i = 0; i < n; ++i) x_plus_y[i] = p[i].x + p[i].y; 50     } 51  52     int tree[MAXV]; 53     int lowbit(int x) { 54         return x & -x; 55     } 56  57     void update_min(int &a, int b) { 58         if(b == -1) return ; 59         if(a == -1 || x_plus_y[a] > x_plus_y[b]) 60             a = b; 61     } 62  63     void initBit() { 64         memset(tree + 1, -1, hcnt * sizeof(int)); 65     } 66  67     void modify(int x, int val) { 68         while(x) { 69             update_min(tree[x], val); 70             x -= lowbit(x); 71         } 72     } 73  74     int query(int x) { 75         int res = -1; 76         while(x <= hcnt) { 77             update_min(res, tree[x]); 78             x += lowbit(x); 79         } 80         return res; 81     } 82  83     void build_edge() { 84         sort(p, p + n); 85         get_x_plus_y(); 86         get_y_sub_x(); 87         initBit(); 88         for(int i = n - 1; i >= 0; --i) { 89             int tmp = query(y_sub_x[i]); 90             if(tmp != -1) edge[ecnt++] = Edge(p[i].id, p[tmp].id, x_plus_y[tmp] - x_plus_y[i]); 91             modify(y_sub_x[i], i); 92         } 93     } 94  95     int fa[MAXV], ans[MAXV]; 96  97     int find_set(int x) { 98         return fa[x] == x ? x : fa[x] = find_set(fa[x]); 99     }100 101     int kruskal() {102         for(int i = 0; i < n; ++i) fa[i] = i;103         sort(edge, edge + ecnt);104         int acnt = 0;105         for(int i = 0; i < ecnt; ++i) {106             int fu = find_set(edge[i].u), fv = find_set(edge[i].v);107             if(fu != fv) {108                 ans[acnt++] = edge[i].cost;109                 fa[fu] = fv;110             }111         }112         reverse(ans, ans + acnt);113         return ans[k - 1];114     }115 116     void mymain() {117         scanf("%d%d", &n, &k);118         for(int i = 0; i < n; ++i) p[i].read(i);119 120         build_edge();121         for(int i = 0; i < n; ++i) swap(p[i].x, p[i].y);122         build_edge();123         for(int i = 0; i < n; ++i) p[i].x = -p[i].x;124         build_edge();125         for(int i = 0; i < n; ++i) swap(p[i].x, p[i].y);126         build_edge();127 128         printf("%d\n", kruskal());129     }130 }131 132 int main() {133     Bilibili::mymain();134 }
View Code

 

POJ 3241 Object Clustering(Manhattan MST)