首页 > 代码库 > MySQL-分区表-1

MySQL-分区表-1

mysql中数据库learn文件夹结构:


技术分享


看一下表sales的定义:

show create  table sales \G
*************************** 1. row ***************************
Table: sales
Create Table: CREATE TABLE `sales` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `amount` double NOT NULL,
  `order_day` datetime NOT NULL,
  PRIMARY KEY (`id`,`order_day`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(order_day))
(PARTITION p_2010 VALUES LESS THAN (2010) ENGINE = InnoDB,
 PARTITION p_2011 VALUES LESS THAN (2011) ENGINE = InnoDB,
 PARTITION p_2012 VALUES LESS THAN (2012) ENGINE = InnoDB,
 PARTITION p_catchall VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)

表p_key的定义

show create  table p_key \G
*************************** 1. row ***************************
Table: p_key
Create Table: CREATE TABLE `p_key` (
  `id` int(10) NOT NULL AUTO_INCREMENT,
  `keyname` char(20) DEFAULT NULL,
  `keyval` varchar(1000) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=MyISAM AUTO_INCREMENT=12 DEFAULT CHARSET=utf8
/*!50100 PARTITION BY KEY (id)
PARTITIONS 4 */
1 row in set (0.01 sec)

对于MyISAM引擎,一张表对于存储了3个文件。fm存储表结构。myi存放索引,myd存放数据。

但p_key相应的另一个文件p_key.par。


又一次创建一个Range分区的表fuhui_log,体验分区查询:

DROP TABLE IF EXISTS fuhui_log;
CREATE TABLE fuhui_log (
    object_id int(11),
    title varchar(20) NOT NULL  ,
    content varchar(20) ,
    time int(11),
    primary key (object_id)
)
PARTITION BY range (object_id)
(
    PARTITION p1 VALUES less than (5000),
    PARTITION p2 VALUES less than (10000),
    PARTITION p3 VALUES less than MAXVALUE
);

自己定义存储过程,向数据库中插入20000条数据:

delimiter //
create procedure fun_fuhui_log() 
begin
    declare i int;
    set i = 1;
    while i < 20000 do
        insert into fuhui_log(object_id,title,content,time) values (i,concat(‘title_‘,i),‘test content‘,i);
        set i = i+1;
    end while;
end
//

调用存储过程,进行数据插入:

delimiter ;
call fun_fuhui_log();

获取插入数据结果:

 select count(*) from fuhui_log;

查询结果为19999,耗时:1 row in set (0.01 sec);


select * from fuhui_log where object_id = 13588;

耗时0.00 sec


依据如上的步骤。创建一个基本表,并改动存储过程,插入相同的数据:

DROP TABLE IF EXISTS fuhui_log2;
CREATE TABLE fuhui_log2 (
    object_id int(11),
    title varchar(20) NOT NULL  ,
    content varchar(20) ,
    time int(11),
    primary key (object_id)
);

数据结构设计的太简单,数据量太小。看不出效果来,重先改动存储过程。插入80000条数据:

while i < 80000 do
        replace into fuhui_log2(object_id,title,content,time) values (i,concat(‘title_‘,i),‘test content‘,i);
        set i = i+1;
end while;

select count(*) from fuhui_log2;

运行结果:1 row in set (0.02 sec)

select count(*) from fuhui_log;

运行结果:1 row in set (0.03 sec)【没有依照逻辑出牌】


这个样例非常失败,改动表结构。去掉primary key

 alter table fuhui_log drop primary key;
 alter table fuhui_log2 drop primary key;

样例仍然比較失败,运行的效率非常难发现

select * from fuhui_log where object_id = 56770 \G

耗时:0.05sec

select * from fuhui_log2 where object_id = 56770 \G

耗时0.06sec


对于count统计,fuhui_log比fuhui_log2耗时都多。count的并行计算,都被我给玷污了

改动分区结构,又一次计算:

 alter table fuhui_log reorganize partition p3 into (
 partition p3_1 values less than (30000),
 partition p3_2 values less than (50000),
 partition p3_3 values less than MAXVALUE);

查看又一次分区后的结果:

select table_schema,table_name,partition_name,PARTITION_METHOD from infor
mation_schema.partitions where table_name=‘fuhui_log‘;

然后又一次计算:

select count(*) from fuhui_log ;

运行效果0.04sec,跟fuhui_log2的统计时间相等了。可是

select * from fuhui_log where object_id = 56770 \G

运行时间变成了0.02sec

竟然已经写这么久了,今天就此罢笔吧

<script type="text/javascript"> $(function () { $(‘pre.prettyprint code‘).each(function () { var lines = $(this).text().split(‘\n‘).length; var $numbering = $(‘
    ‘).addClass(‘pre-numbering‘).hide(); $(this).addClass(‘has-numbering‘).parent().append($numbering); for (i = 1; i <= lines; i++) { $numbering.append($(‘
  • ‘).text(i)); }; $numbering.fadeIn(1700); }); }); </script>

MySQL-分区表-1