首页 > 代码库 > CodeForces 689D Friends and Subsequences

CodeForces 689D Friends and Subsequences

枚举,二分,$RMQ$。

对于一个序列来说,如果固定区间左端点,随着右端点的增大,最大值肯定是非递减的,最小值肯定是非递增的。

因此,根据这种单调性,我们可以枚举区间左端点$L$,二分找到第一个位置${{p_1}}$,使得$\mathop {\max }\limits_{i = L}^{{p_1}} {a_i} = \mathop {\min }\limits_{i = L}^{{p_1}} {b_i}$;再次二分找到最后一个位置${{p_2}}$,使得$\mathop {\max }\limits_{i = L}^{{p_2}} {a_i} = \mathop {\min }\limits_{i = L}^{{p_2}} {b_i}$。那么以$L$为左端点的区间,有${{p_2}}-{{p_1}}+1$个。查询区间最值的话可以倍增预处理一下。

#pragma comment(linker, "/STACK:1024000000,1024000000")#include<cstdio>#include<cstring>#include<cmath>#include<algorithm>#include<vector>#include<map>#include<set>#include<queue>#include<stack>#include<iostream>using namespace std;typedef long long LL;const double pi=acos(-1.0),eps=1e-6;void File(){    freopen("D:\\in.txt","r",stdin);    freopen("D:\\out.txt","w",stdout);}template <class T>inline void read(T &x){    char c = getchar();    x = 0; while(!isdigit(c)) c = getchar();    while(isdigit(c)) { x = x * 10 + c - 0; c = getchar(); }}const int maxn=200010;int a[maxn],b[maxn],n;int MAX[maxn][30],MIN[maxn][30];void RMQ_init(){    for(int i=0;i<n;i++) MAX[i][0]=a[i],MIN[i][0]=b[i];    for(int j=1;(1<<j)<=n;j++)        for(int i=0;i+(1<<j)-1<n;i++)            MAX[i][j]=max(MAX[i][j-1],MAX[i+(1<<(j-1))][j-1]),            MIN[i][j]=min(MIN[i][j-1],MIN[i+(1<<(j-1))][j-1]);}int RMQ_MAX(int L,int R){    int k=0;    while((1<<(k+1))<=R-L+1) k++;    return max(MAX[L][k],MAX[R-(1<<k)+1][k]);}int RMQ_MIN(int L,int R){    int k=0;    while((1<<(k+1))<=R-L+1) k++;    return min(MIN[L][k],MIN[R-(1<<k)+1][k]);}int main(){    scanf("%d",&n);    for(int i=0;i<n;i++) scanf("%d",&a[i]);    for(int i=0;i<n;i++) scanf("%d",&b[i]);    RMQ_init();    LL ans=0;    for(int i=0;i<n;i++)    {        if(b[i]<a[i]) continue;        int p1=-1,p2=-1;        int L=i,R=n-1;        while(L<=R)        {            int mid=(L+R)/2;            int mx=RMQ_MAX(i,mid),mn=RMQ_MIN(i,mid);            if(mx>mn) R=mid-1;            else if(mx==mn) R=mid-1,p1=mid;            else L=mid+1;        }        L=i,R=n-1;        while(L<=R)        {            int mid=(L+R)/2;            int mx=RMQ_MAX(i,mid),mn=RMQ_MIN(i,mid);            if(mx>mn) R=mid-1;            else if(mx==mn) L=mid+1,p2=mid;            else L=mid+1;        }        if(p1==-1) continue;        ans=ans+(LL)(p2-p1+1);    }    printf("%lld\n",ans);    return 0;}

 

CodeForces 689D Friends and Subsequences