首页 > 代码库 > Uva 11149 - Power of Matrix ( 矩阵快速幂 )
Uva 11149 - Power of Matrix ( 矩阵快速幂 )
Uva 11149 - Power of Matrix ( 矩阵快速幂 )
#include <cstdio>#include <cstring>#define CLR( a, b ) memset( a, b, sizeof(a) )#define MOD 10#define MAX_SIZE 40struct Mat{ int r, c; int mat[MAX_SIZE][MAX_SIZE]; Mat( int _r = 0 , int _c = 0 ) { CLR( mat, 0 ); r = _r, c = _c; } void init() { for( int i = 0; i < r; ++i ) for( int j = 0; j < c; ++j ) mat[i][j] = ( i == j ); } Mat operator + ( const Mat &b ) const { Mat t( r, c ); for( int i = 0; i < r; ++i ) for( int j = 0; j < c; ++j ) t.mat[i][j] = ( mat[i][j] + b.mat[i][j] ) % MOD; return t; } Mat operator * ( const Mat &b ) const { Mat t( r, b.c ); for( int k = 0; k < c; ++k ) for( int i = 0; i < r; ++i ) if( mat[i][k] ) for( int j = 0; j < b.c; ++j ) t.mat[i][j] = ( t.mat[i][j] + mat[i][k] * b.mat[k][j] ) % MOD; return t; } void debug() { for( int i = 0; i < r; ++i ) { for( int j = 0; j < c; ++j ) { if( j !=0 ) putchar( ‘ ‘ ); printf( "%d", mat[i][j] ); } putchar( ‘\n‘ ); } }};Mat fast_mod( Mat a, int b ){ Mat c( a.r, a.c ); c.init(); while( b ) { if( b & 1 ) c = c * a; a = a * a; b >>= 1; } return c;}Mat solve( Mat a, int b ){ if( b == 1 ) return a; Mat in( a.r, a.c ); in.init(); if( b == 0 ) return in; if( b & 1 ) return solve( a, b/2 ) * ( in + fast_mod( a, b/2 ) ) + fast_mod( a, b ); else return solve( a, b/2 ) * ( in + fast_mod( a, b/2 ) );}void Orz(){ int n, k, x; int cas = 0; while( ~scanf( "%d %d", &n, &k ) && n ) { Mat t( n, n ); for( int i = 0; i < n; ++i ) { for( int j = 0; j < n; ++j ) { scanf( "%d", &x ); t.mat[i][j] = x % MOD; } } t = solve( t, k ); t.debug(); putchar( ‘\n‘ ); }}int main(){ Orz(); return 0;}
Uva 11149 - Power of Matrix ( 矩阵快速幂 )
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。