首页 > 代码库 > SCU - 4439 Vertex Cover (图的最小点覆盖集)
SCU - 4439 Vertex Cover (图的最小点覆盖集)
Vertex Cover
frog has a graph with \(n\) vertices \(v(1), v(2), \dots, v(n)\) and \(m\) edges \((v(a_1), v(b_1)), (v(a_2), v(b_2)), \dots, (v(a_m), v(b_m))\).
She would like to color some vertices so that each edge has at least one colored vertex.
Find the minimum number of colored vertices.
Input
The input consists of multiple tests. For each test:
The first line contains \(2\) integers \(n, m\) (\(2 \leq n \leq 500, 1 \leq m \leq \frac{n(n - 1)}{2}\)). Each of the following \(m\) lines contains \(2\) integers \(a_i, b_i\) (\(1 \leq a_i, b_i \leq n, a_i \neq b_i, \min\{a_i, b_i\} \leq 30\))
Output
For each test, write \(1\) integer which denotes the minimum number of colored vertices.
Sample Input
3 2
1 2
1 3
6 5
1 2
1 3
1 4
2 5
2 6
Sample Output
1
2
#include <bits/stdc++.h> #define mp make_pair #define pb push_back #define met(a,b) memset(a,b,sizeof a) using namespace std; typedef long long ll; typedef pair<int,int>pii; const int N = 1e5+5; const double eps = 1e-8; int T,n,cnt,m; bool ok=true; int k,mi[N]; int a[N],vis[N],match[N]; char str[N],s[N]; vector<int>edg[N]; bool dfs(int now){ for(int i=0;i<edg[now].size();++i){ int x=edg[now][i]; if(!vis[x]){ vis[x]=1; if(!match[x]||dfs(match[x])){ match[now]=x; match[x]=now; return true; } } } return false; } int main() { int u,v; while(~scanf("%d%d",&n,&m)){ for(int i=0;i<N;i++)edg[i].clear(),match[i]=0; int ans=0; while(m--){ scanf("%d%d",&u,&v); edg[u].pb(v); edg[v].pb(u); } for(int i=1;i<=n;i++){ if(!match[i]){ met(vis,0); if(dfs(i))ans++; } } printf("%d\n",ans); } return 0; }
SCU - 4439 Vertex Cover (图的最小点覆盖集)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。