首页 > 代码库 > python-yield

python-yield

生成器(generator)概念

生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。

生成器语法

生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
>>> gen = (x**2 for x in range(5))
>>> gen
<generator object <genexpr> at 0x0000000002FB7B40>
>>> for g in gen:
...   print(g, end=‘-‘)
...
0-1-4-9-16-
>>> for x in [0,1,2,3,4,5]:
...   print(x, end=‘-‘)
...
0-1-2-3-4-5-

生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。

但是生成器函数可以生产一个无线的序列,这样列表根本没有办法进行处理。

yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。

下面为一个可以无穷生产奇数的生成器函数。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
def odd():
    n=1
    while True:
        yield n
        n+=2
odd_num = odd()
count = 0
for o in odd_num:
    if count >=5: break
    print(o)
    count +=1

当然通过手动编写迭代器可以实现类似的效果,只不过生成器更加直观易懂

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
class Iter:
    def __init__(self):
        self.start=-1
    def __iter__(self):
        return self
    def __next__(self):
        self.start +=2
        return self.start
I = Iter()
for count in range(5):
    print(next(I))

题外话: 生成器是包含有__iter()和next__()方法的,所以可以直接使用for来迭代,而没有包含StopIteration的自编Iter来只能通过手动循环来迭代。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
>>> from collections import Iterable
>>> from collections import Iterator
>>> isinstance(odd_num, Iterable)
True
>>> isinstance(odd_num, Iterator)
True
>>> iter(odd_num) is odd_num
True
>>> help(odd_num)
Help on generator object:
 
odd = class generator(object)
|  Methods defined here:
|
|  __iter__(self, /)
|      Implement iter(self).
|
|  __next__(self, /)
|      Implement next(self).
......

看到上面的结果,现在你可以很有信心的按照Iterator的方式进行循环了吧!

在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

 

yield 与 return

在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
>>> def g1():
...     yield 1
...
>>> g=g1()
>>> next(g)    #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。
1
>>> next(g)    #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>>

 

如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
12
>>> def g2():
...     yield ‘a‘
...     return
...     yield ‘b‘
...
>>> g=g2()
>>> next(g)    #程序停留在执行完yield ‘a‘语句后的位置。
‘a‘
>>> next(g)    #程序发现下一条语句是return,所以抛出StopIteration异常,这样yield ‘b‘语句永远也不会执行。
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

 

如果在return后返回一个值,那么这个值为StopIteration异常的说明,不是程序的返回值。

生成器没有办法使用return来返回值。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
>>> def g3():
...     yield ‘hello‘
...     return ‘world‘
...
>>> g=g3()
>>> next(g)
‘hello‘
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration: world

 

生成器支持的方法

 

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> help(odd_num)
Help on generator object:
 
odd = class generator(object)
|  Methods defined here:
......
|  close(...)
|      close() -> raise GeneratorExit inside generator.
|
|  send(...)
|      send(arg) -> send ‘arg‘ into generator,
|      return next yielded value or raise StopIteration.
|
|  throw(...)
|      throw(typ[,val[,tb]]) -> raise exception in generator,
|      return next yielded value or raise StopIteration.
......

 

close()

手动关闭生成器函数,后面的调用会直接返回StopIteration异常。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
12
13
>>> def g4():
...     yield 1
...     yield 2
...     yield 3
...
>>> g=g4()
>>> next(g)
1
>>> g.close()
>>> next(g)    #关闭后,yield 2和yield 3语句将不再起作用
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

 send()

生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这是生成器函数最难理解的地方,也是最重要的地方,实现后面我会讲到的协程就全靠它了。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
0
got: aaa
got: 3
Traceback (most recent call last):
File "h.py", line 14, in <module>
  print(g.send(‘e‘))
StopIteration

 throw()

用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。
throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def gen():
    while True:
        try:
            yield ‘normal value‘
            yield ‘normal value 2‘
            print(‘here‘)
        except ValueError:
            print(‘we got ValueError here‘)
        except TypeError:
            break
 
g=gen()
print(next(g))
print(g.throw(ValueError))
print(next(g))
print(g.throw(TypeError))

输出结果为:

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
normal value
we got ValueError here
normal value
normal value 2
Traceback (most recent call last):
  File "h.py", line 15, in <module>
    print(g.throw(TypeError))
StopIteration

解释:

  1. print(next(g)):会输出normal value,并停留在yield ‘normal value 2’之前。
  2. 由于执行了g.throw(ValueError),所以会跳过所有后续的try语句,也就是说yield ‘normal value 2’不会被执行,然后进入到except语句,打印出we got ValueError here。然后再次进入到while语句部分,消耗一个yield,所以会输出normal value。
  3. print(next(g)),会执行yield ‘normal value 2’语句,并停留在执行完该语句后的位置。
  4. g.throw(TypeError):会跳出try语句,从而print(‘here’)不会被执行,然后执行break语句,跳出while循环,然后到达程序结尾,所以跑出StopIteration异常。

下面给出一个综合例子,用来把一个多维列表展开,或者说扁平化多维列表)

 
 
 
 
 
 
Python
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def flatten(nested):
 
    try:
        #如果是字符串,那么手动抛出TypeError。
        if isinstance(nested, str):
            raise TypeError
        for sublist in nested:
            #yield flatten(sublist)
            for element in flatten(sublist):
                #yield element
                print(‘got:‘, element)
    except TypeError:
        #print(‘here‘)
        yield nested
 
L=[‘aaadf‘,[1,2,3],2,4,[5,[6,[8,[9]],‘ddf‘],7]]
for num in flatten(L):
    print(num)

如果理解起来有点困难,那么把print语句的注释打开在进行查看就比较明了了。

所谓协程就是在一个线程中切换子进程,相比多线程有如下好处:最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。

python的协程通过generator支持的.

yield可以接受参数|传递参数.

send调用协程,第一次要使用send(None)启动generator.

 

总结

  1. 按照鸭子模型理论,生成器就是一种迭代器,可以使用for进行迭代。
  2. 第一次执行next(generator)时,会执行完yield语句后程序进行挂起,所有的参数和状态会进行保存。再一次执行next(generator)时,会从挂起的状态开始往后执行。在遇到程序的结尾或者遇到StopIteration时,循环结束。
  3. 可以通过generator.send(arg)来传入参数,这是协程模型。
  4. 可以通过generator.throw(exception)来传入一个异常。throw语句会消耗掉一个yield。可以通过generator.close()来手动关闭生成器。
  5. next()等价于send(None)

python-yield