首页 > 代码库 > HDU5124:lines(线段树+离散化)或(离散化思想)
HDU5124:lines(线段树+离散化)或(离散化思想)
http://acm.hdu.edu.cn/showproblem.php?pid=5124
Problem Description
John has several lines. The lines are covered on the X axis. Let A is a point which is covered by the most lines. John wants to know how many lines cover A.
Input
The first line contains a single integer T(1≤T≤100)(the data for N>100 less than 11 cases),indicating the number of test cases.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.
Each test case begins with an integer N(1≤N≤105),indicating the number of lines.
Next N lines contains two integers Xi and Yi(1≤Xi≤Yi≤109),describing a line.
Output
For each case, output an integer means how many lines cover A.
Sample Input
2
5
1 2
2 2
2 4
3 4
5 1000
5
11
2 2
3 3
4 4
5 5
Sample Output
3
1
题目解析:
题意:给定 n 个区间,问最多重复的子区间?
题解:(离散化思想)讲所有的数都排个序,将区间的左值定为 1 ,右值定为 -1 ,这样对所有的数搜一遍过去找最大的值即可;或者用线段树+离散化。
一:线段树
#include <iostream>#include <stdio.h>#include <string.h>#include <stdlib.h>#include <algorithm>#define N 100010using namespace std;struct li{ int x,y;}line[N];struct node{ int l,r; int lz;}q[8*N];int n,tt,X[2*N];int maxx;void build(int l,int r,int rt){ q[rt].l=l; q[rt].r=r; q[rt].lz=0; if(l==r) return ; int mid=(l+r)>>1; build(l,mid,rt<<1); build(mid+1,r,rt<<1|1); return ;}void pushdown(int rt){ if(q[rt].lz) { q[rt<<1].lz+=q[rt].lz; q[rt<<1|1].lz+=q[rt].lz; q[rt].lz=0; }}void update(int lf,int rf,int l,int r,int rt){ if(lf<=l&&rf>=r) { q[rt].lz+=1; return ; } pushdown(rt); int mid=(l+r)>>1; if(lf<=mid) update(lf,rf,l,mid,rt<<1); if(rf>mid) update(lf,rf,mid+1,r,rt<<1|1); return ;}void query(int l,int r,int rt){ if(l==r) { maxx=max(maxx,q[rt].lz); return ; } pushdown(rt); int mid=(l+r)>>1; query(l,mid,rt<<1); query(mid+1,r,rt<<1|1); return ;}int main(){ int T; scanf("%d",&T); while(T--) { tt=0; maxx=-1; scanf("%d",&n); for(int i=0;i<n;i++) { scanf("%d%d",&line[i].x,&line[i].y); X[tt++]=line[i].x; X[tt++]=line[i].y; } sort(X,X+tt); int sum=unique(X,X+tt)-X; build(1,sum,1); for(int i=0;i<n;i++) { int le=lower_bound(X,X+sum,line[i].x)-X+1; int re=lower_bound(X,X+sum,line[i].y)-X+1; if(le<=re) update(le,re,1,sum,1); } query(1,sum,1); printf("%d\n",maxx); } return 0;}
二:离散化:思路:可以把一条线段分出两个端点离散化,左端点被标记为-1,右端点被标记为1,然后排序,如果遇到标记为-1,cnt++,否则cnt--;找出cnt的最大值。
#include <cstdio>#include <cstring>#include <algorithm>#define maxn 200010using namespace std;struct node{ int x,c; bool operator<(const node &a)const { return (x<a.x)||(x==a.x&&c<a.c); }}p[maxn];int t;int n;int main(){ scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i=0; i<n; i++) { int s,e; scanf("%d%d",&s,&e); p[i*2].x=s; p[i*2].c=-1; p[i*2+1].x=e; p[i*2+1].c=1; } sort(p,p+2*n); int cnt=0; int ans=0; for(int i=0; i<2*n; i++) { if(p[i].c==-1) { cnt++; } else cnt--; ans=max(ans,cnt); } printf("%d\n",ans); } return 0;}
可惜做BC时,这两种方法都没想出来,悲催!
#include <stdio.h>#include <string.h>#include <stdlib.h>#include <math.h>#include <time.h>#include <ctype.h>#include <string>#include <queue>#include <set>#include <map>#include <stack>#include <vector>#include <algorithm>#include <iostream>#define PI acos( -1.0 )using namespace std;typedef long long ll;const int NO = 1e5 + 10;struct ND{ int x, y;}st[NO<<1];int n;bool cmp( const ND &a, const ND &b ){ if( a.x == b.x ) return a.y > b.y; return a.x < b.x;}int main(){ int T; scanf( "%d",&T ); while( T-- ) { scanf( "%d", &n ); int cur = 0; for( int i = 0; i < n; ++i ) { scanf( "%d", &st[cur].x ); st[cur++].y = 1; scanf( "%d", &st[cur].x ); st[cur++].y = -1; } sort( st, st+cur, cmp ); int ans = 0; int Max = 0; for( int i = 0; i < cur; ++i ) { ans += st[i].y; Max = max( ans, Max ); } printf( "%d\n", Max ); } return 0;}
HDU5124:lines(线段树+离散化)或(离散化思想)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。