首页 > 代码库 > 119. Pascal's Triangle II
119. Pascal's Triangle II
https://leetcode.com/problems/pascals-triangle-ii/#/solutions
Given an index k, return the kth row of the Pascal‘s triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
Sol:
Elegent!
Let i be the ith row. Alawys append 1 to the end of the row before moving on the the next row.
For each line, the jth element equals to the sum of jth element in the previous row and the (j-1)th element in the previous row.
We do not need to create a tuple to keep track of (i th row, j th element). Before value of j th element in ith row -- res[j] -- is updated, variable res[j] stores the value of j th element in (i-1) th row. And the res[j-1] stores the value of (j-1) th element in (i-1) th row.
Thus, we simply add them together to get the j th element in i th row.
class Solution(object): def getRow(self, rowIndex): """ :type rowIndex: int :rtype: List[int] """ # O(k) space, O(n^2) time res = [] for i in range(rowIndex+1): res.append(1) #range(start,end,step) for j in range(i,0,-1): if j == i: res[j] = 1 else: res[j] += res[j-1] return res
Note:
1 When the index j th element j equals to the row numer i, it means the j th element is the last element in the row.
119. Pascal's Triangle II
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。