首页 > 代码库 > 『TensorFlow』单隐藏层自编码器设计
『TensorFlow』单隐藏层自编码器设计
计算图设计
很简单的实践,
- 多了个隐藏层
- 没有上节的高斯噪声
- 网络写法由上节的面向对象改为了函数式编程,
其他没有特别需要注意的,实现如下:
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘ learning_rate = 0.01 # 学习率 training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size batch_size = 128 # batch容量 display_step = 1 # 展示间隔 example_to_show = 10 # 展示图像数目 n_hidden_units = 256 n_input_units = 784 n_output_units = n_input_units def WeightsVariable(n_in, n_out, name_str): return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str) def biasesVariable(n_out, name_str): return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str) def encoder(x_origin, activate_func=tf.nn.sigmoid): with tf.name_scope(‘Layer‘): Weights = WeightsVariable(n_input_units, n_hidden_units, ‘Weights‘) biases = biasesVariable(n_hidden_units, ‘biases‘) x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases)) return x_code def decode(x_code, activate_func=tf.nn.sigmoid): with tf.name_scope(‘Layer‘): Weights = WeightsVariable(n_hidden_units, n_output_units, ‘Weights‘) biases = biasesVariable(n_output_units, ‘biases‘) x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases)) return x_decode with tf.Graph().as_default(): with tf.name_scope(‘Input‘): X_input = tf.placeholder(tf.float32, [None, n_input_units]) with tf.name_scope(‘Encode‘): X_code = encoder(X_input) with tf.name_scope(‘decode‘): X_decode = decode(X_code) with tf.name_scope(‘loss‘): loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2)) with tf.name_scope(‘train‘): Optimizer = tf.train.RMSPropOptimizer(learning_rate) train = Optimizer.minimize(loss) init = tf.global_variables_initializer() # 因为使用了tf.Graph.as_default()上下文环境 # 所以下面的记录必须放在上下文里面,否则记录下来的图是空的(get不到上面的default) writer = tf.summary.FileWriter(logdir=‘logs‘, graph=tf.get_default_graph()) writer.flush()
计算图:
『TensorFlow』单隐藏层自编码器设计
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。