首页 > 代码库 > 『cs231n』线性分类器最优化
『cs231n』线性分类器最优化
最优化策略
1.差劲的方案,随机搜索
bestloss = float(‘inf‘) # 无穷大 for num in range(1000): W = np.random.randn(10, 3073) * 0.0001 loss = L(X_train, Y_train, W) if loss < bestloss: bestloss = loss bestW = W scores = bsetW.dot(Xte_cols) Yte_predict = np.argmax(score, axis = 0) np.mean(Yte_predict == Yte)
核心思路:迭代优化
2.浪费的方案,随机本地搜索
W = np.random.randn(10, 3073) * 0.001 bestloss = float(‘inf‘) for i in range(1000): step_size = 0.0001 Wtry = np.random.randn(10, 3073) * step_size loss = L(Xtr_cols, Ytr, Wtry) if loss < bestloss: W = Wtry bestloss = loss
3.跟随梯度
『cs231n』线性分类器最优化
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。