首页 > 代码库 > 利用opencv源代码和vs编程序训练分类器haartraining.cpp
利用opencv源代码和vs编程序训练分类器haartraining.cpp
如需转载请注明本博网址:http://blog.csdn.net/ding977921830/article/details/47733363。
一 训练框架
训练人脸检測分类器须要三个步骤:
(1) 准备正负样本集,分别放到两个目录里。
我使用的是麻省理工的那个人脸库。大家能够网上搜一下。
(2)把正样本集生成正样本描写叙述文件(*.vec),把负样本集生成负样本集合文件。详细怎么操作请參考我博客中的另外两篇文章,各自是http://blog.csdn.net/ding977921830/article/details/45913789和http://blog.csdn.net/ding977921830/article/details/45914137。
(3)利用........\opencv\sources\apps\haartraining\haartraining.cpp训练分类器。
二 建立project
我使用的是vs2012和opencv2.4.9,事实上,使用其它的版本号也区别不多大。
1 配置opencv2.4.9和vs2012,这个网上有非常多资料,我就不啰嗦了哈。
2 在vs中新建project,把opencv库中的以下文件........\opencv\sources\apps\haartraining加入到project中,在解决方式资源管理器中,分别加入头文件和源文件,加入好后,内容例如以下:
三 程序
上面main.cpp的内容也就是haartraining.cpp中的程序,详细内容例如以下:
//M*/ /* * haartraining.cpp *里面有部分參数我是稍作改动 *<a target=_blank href="http://blog.csdn.net/ding977921830/article/details/47733363">http://blog.csdn.net/ding977921830/article/details/47733363</a> * Train cascade classifier */ #include <cstdio> #include <cstring> #include <cstdlib> using namespace std; #include "cvhaartraining.h" int main( int argc, char* argv[] ) { int i = 0; char* nullname = (char*)"(NULL)"; char* vecname = NULL; char* dirname = NULL; char* bgname = NULL; bool bg_vecfile = false; int npos = 2000; //保证npos与nneg的比例为1:2至1::3之间比較好 int nneg = 4000; int nstages = 3; //为了节约时间能够把把设置为1,或2或3。当然也能够设置十几或二十几。只是,我没有耐心实验 int mem = 200; int nsplits = 1; float minhitrate = 0.995F; float maxfalsealarm = 0.5F; float weightfraction = 0.95F; int mode = 0; int symmetric = 1; int equalweights = 0; int width = 20; int height = 20; const char* boosttypes[] = { "DAB", "RAB", "LB", "GAB" }; int boosttype = 0; //选用DAB const char* stumperrors[] = { "misclass", "gini", "entropy" }; int stumperror = 0; //选用misclass int maxtreesplits = 0; int minpos = 500; if( argc == 1 ) { printf( "Usage: %s\n -data <dir_name>\n" " -vec <vec_file_name>\n" " -bg <background_file_name>\n" " [-bg-vecfile]\n" " [-npos <number_of_positive_samples = %d>]\n" " [-nneg <number_of_negative_samples = %d>]\n" " [-nstages <number_of_stages = %d>]\n" " [-nsplits <number_of_splits = %d>]\n" " [-mem <memory_in_MB = %d>]\n" " [-sym (default)] [-nonsym]\n" " [-minhitrate <min_hit_rate = %f>]\n" " [-maxfalsealarm <max_false_alarm_rate = %f>]\n" " [-weighttrimming <weight_trimming = %f>]\n" " [-eqw]\n" " [-mode <BASIC (default) | CORE | ALL>]\n" " [-w <sample_width = %d>]\n" " [-h <sample_height = %d>]\n" " [-bt <DAB | RAB | LB | GAB (default)>]\n" " [-err <misclass (default) | gini | entropy>]\n" " [-maxtreesplits <max_number_of_splits_in_tree_cascade = %d>]\n" " [-minpos <min_number_of_positive_samples_per_cluster = %d>]\n", argv[0], npos, nneg, nstages, nsplits, mem, minhitrate, maxfalsealarm, weightfraction, width, height, maxtreesplits, minpos ); return 0; } for( i = 1; i < argc; i++ ) { /*if( !strcmp( argv[i], "-data" ) ) { dirname = argv[++i]; } else if( !strcmp( argv[i], "-vec" ) ) { vecname = argv[++i]; } else if( !strcmp( argv[i], "-bg" ) ) { bgname = argv[++i]; }*/ if( !strcmp( argv[i], "-data" ) ) //前面这三个条件里面的内容我稍作改动 { dirname = argv[i]; } else if( !strcmp( argv[i], "-vec.vec" ) ) { vecname = argv[i]; } else if( !strcmp( argv[i], "-bg.txt" ) ) { bgname = argv[i]; } else if( !strcmp( argv[i], "-bg-vecfile" ) ) { bg_vecfile = true; } else if( !strcmp( argv[i], "-npos" ) ) { npos = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-nneg" ) ) { nneg = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-nstages" ) ) { nstages = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-nsplits" ) ) { nsplits = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-mem" ) ) { mem = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-sym" ) ) { symmetric = 1; } else if( !strcmp( argv[i], "-nonsym" ) ) { symmetric = 0; } else if( !strcmp( argv[i], "-minhitrate" ) ) { minhitrate = (float) atof( argv[++i] ); } else if( !strcmp( argv[i], "-maxfalsealarm" ) ) { maxfalsealarm = (float) atof( argv[++i] ); } else if( !strcmp( argv[i], "-weighttrimming" ) ) { weightfraction = (float) atof( argv[++i] ); } else if( !strcmp( argv[i], "-eqw" ) ) { equalweights = 1; } else if( !strcmp( argv[i], "-mode" ) ) { char* tmp = argv[++i]; if( !strcmp( tmp, "CORE" ) ) { mode = 1; } else if( !strcmp( tmp, "ALL" ) ) { mode = 2; } else { mode = 0; } } else if( !strcmp( argv[i], "-w" ) ) { width = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-h" ) ) { height = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-bt" ) ) { i++; if( !strcmp( argv[i], boosttypes[0] ) ) { boosttype = 0; } else if( !strcmp( argv[i], boosttypes[1] ) ) { boosttype = 1; } else if( !strcmp( argv[i], boosttypes[2] ) ) { boosttype = 2; } else { boosttype = 3; } } else if( !strcmp( argv[i], "-err" ) ) { i++; if( !strcmp( argv[i], stumperrors[0] ) ) { stumperror = 0; } else if( !strcmp( argv[i], stumperrors[1] ) ) { stumperror = 1; } else { stumperror = 2; } } else if( !strcmp( argv[i], "-maxtreesplits" ) ) { maxtreesplits = atoi( argv[++i] ); } else if( !strcmp( argv[i], "-minpos" ) ) { minpos = atoi( argv[++i] ); } } printf( "Data dir name: %s\n", ((dirname == NULL) ? nullname : dirname ) ); printf( "Vec file name: %s\n", ((vecname == NULL) ? nullname : vecname ) ); printf( "BG file name: %s, is a vecfile: %s\n", ((bgname == NULL) ? nullname : bgname ), bg_vecfile ? "yes" : "no" ); printf( "Num pos: %d\n", npos ); printf( "Num neg: %d\n", nneg ); printf( "Num stages: %d\n", nstages ); printf( "Num splits: %d (%s as weak classifier)\n", nsplits, (nsplits == 1) ?我的命令行參数为:"D:\vs2012\projects\train_opencv_main\train_cascade\Debug\test.exe" "-data" "-vec.vec" "-bg.txt""stump" : "tree" ); printf( "Mem: %d MB\n", mem ); printf( "Symmetric: %s\n", (symmetric) ? "TRUE" : "FALSE" ); printf( "Min hit rate: %f\n", minhitrate ); printf( "Max false alarm rate: %f\n", maxfalsealarm ); printf( "Weight trimming: %f\n", weightfraction ); printf( "Equal weights: %s\n", (equalweights) ? "TRUE" : "FALSE" ); printf( "Mode: %s\n", ( (mode == 0) ? "BASIC" : ( (mode == 1) ? "CORE" : "ALL") ) ); printf( "Width: %d\n", width ); printf( "Height: %d\n", height ); //printf( "Max num of precalculated features: %d\n", numprecalculated ); printf( "Applied boosting algorithm: %s\n", boosttypes[boosttype] ); printf( "Error (valid only for Discrete and Real AdaBoost): %s\n", stumperrors[stumperror] ); printf( "Max number of splits in tree cascade: %d\n", maxtreesplits ); printf( "Min number of positive samples per cluster: %d\n", minpos ); cvCreateTreeCascadeClassifier( dirname, vecname, bgname, npos, nneg, nstages, mem, nsplits, minhitrate, maxfalsealarm, weightfraction, mode, symmetric, equalweights, width, height, boosttype, stumperror, maxtreesplits, minpos, bg_vecfile ); return 0; }
。详细设置方法是 调试----属性----配置属性----调试---命令參数
1 注意命令行參数中间要有空格的。
2 当中第一个你要改动为你自己电脑上project的绝对路径;
3 "-data" 是存放训练好的分类器,须要预先建立好一个的空目录。
4 "-vec.vec" 是我的正样本描写叙述文件。
5 "-bg.txt"是我的负样本集合文件。
四 训练结果
1 dos操作窗体
2 data目录的内容为:
我的0文件里训练了6个弱文类器。1文件里含有9个弱分类器。2目录下有17个弱分类器,每个目录就是一个级联stage。显然是越来越复杂的哈。
3 以文件0为例,里面的内容为:
6
1
2
7 1 6 10 0 -1
9 1 2 10 0 3
haar_x3
4.792333e-002 0 -1
-1.845703e+000 1.845703e+000
1
2
1 3 18 12 0 -1
1 7 18 4 0 3
haar_y3
2.389797e-001 0 -1
-1.396623e+000 1.396623e+000
1
3
2 16 6 4 0 -1
2 16 3 2 0 2
5 18 3 2 0 2
haar_x2_y2
6.900427e-003 0 -1
-9.798445e-001 9.798445e-001
1
2
10 0 10 1 0 -1
10 0 5 1 0 2
haar_x2
1.219139e-002 0 -1
-5.156118e-001 5.156118e-001
1
2
0 0 10 1 0 -1
5 0 5 1 0 2
haar_x2
1.014664e-002 0 -1
-7.365732e-001 7.365732e-001
1
2
9 14 5 3 0 -1
9 15 5 1 0 3
haar_y3
-6.578934e-003 0 -1
7.885281e-001 -7.885281e-001
-3.758514e+000
-1
-1
4 xml文件
到这里我们的训练分类器最终出来的,XML文件能够在在vs中直接调用了。xml文件的内容你看是跟上面data文件里的内容是严格一一相应的,我摘录当中部分内容(也就是0目录部分)例如以下:
<?xml version="1.0"?>
<opencv_storage>
<_-data type_id="opencv-haar-classifier">
<size>
20 20</size>
<stages>
<_>
<!-- stage 0 -->
<trees>
<_>
<!-- tree 0 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>
7 1 6 10 -1.</_>
<_>
9 1 2 10 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>4.7923330217599869e-002</threshold>
<left_val>-1.8457030057907104e+000</left_val>
<right_val>1.8457030057907104e+000</right_val></_></_>
<_>
<!-- tree 1 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>
1 3 18 12 -1.</_>
<_>
1 7 18 4 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>2.3897969722747803e-001</threshold>
<left_val>-1.3966230154037476e+000</left_val>
<right_val>1.3966230154037476e+000</right_val></_></_>
<_>
<!-- tree 2 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>
2 16 6 4 -1.</_>
<_>
2 16 3 2 2.</_>
<_>
5 18 3 2 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>6.9004269316792488e-003</threshold>
<left_val>-9.7984451055526733e-001</left_val>
<right_val>9.7984451055526733e-001</right_val></_></_>
<_>
<!-- tree 3 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>
10 0 10 1 -1.</_>
<_>
10 0 5 1 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>1.2191389687359333e-002</threshold>
<left_val>-5.1561182737350464e-001</left_val>
<right_val>5.1561182737350464e-001</right_val></_></_>
<_>
<!-- tree 4 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>
0 0 10 1 -1.</_>
<_>
5 0 5 1 2.</_></rects>
<tilted>0</tilted></feature>
<threshold>1.0146640241146088e-002</threshold>
<left_val>-7.3657321929931641e-001</left_val>
<right_val>7.3657321929931641e-001</right_val></_></_>
<_>
<!-- tree 5 -->
<_>
<!-- root node -->
<feature>
<rects>
<_>
9 14 5 3 -1.</_>
<_>
9 15 5 1 3.</_></rects>
<tilted>0</tilted></feature>
<threshold>-6.5789339132606983e-003</threshold>
<left_val>7.8852808475494385e-001</left_val>
<right_val>-7.8852808475494385e-001</right_val></_></_></trees>
<stage_threshold>-3.7585139274597168e+000</stage_threshold>
<parent>-1</parent>
<next>-1</next></_>
<_>
利用opencv源代码和vs编程序训练分类器haartraining.cpp