首页 > 代码库 > hadoop2.2.0 MapReduce的序列化
hadoop2.2.0 MapReduce的序列化
package com.my.hadoop.mapreduce.dataformat;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import com.my.hadoop.common.Configs;
/**
* hadoop的序列化
* @author yao
*
*/
public class DataCount {
static class DTMap extends Mapper<LongWritable, Text, Text, DataBean>{
DataBean dataBean = null;
@Override
public void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
String[] fields = value.toString().split("\t");
String telNo = fields[1];
long upPayLoad = Long.parseLong(fields[8]);
long downPayLoad = Long.parseLong(fields[9]);
dataBean = new DataBean(telNo, upPayLoad, downPayLoad);
context.write(new Text(telNo), dataBean);
}
}
static class DTReduce extends Reducer<Text, DataBean, Text, DataBean>{
@Override
public void reduce(Text key, Iterable<DataBean> dataBeans, Context context) throws IOException ,InterruptedException {
long upPayLoad = 0;
long downPayLoad = 0;
for (DataBean dataBean : dataBeans) {
upPayLoad += dataBean.getUpPayLoad();
downPayLoad += dataBean.getDownPayLoad();
}
DataBean dataBean = new DataBean("", upPayLoad, downPayLoad);
context.write(key, dataBean);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = Configs.getConfigInstance();
String[] paths = new GenericOptionsParser(conf, args).getRemainingArgs();
if (paths.length != 2) {
System.err.println("Usage: " + DataCount.class.getName() + " <in> <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, DataCount.class.getSimpleName());
job.setJarByClass(DataCount.class); //设置main函数所在的类
FileInputFormat.setInputPaths(job, new Path(args[0]));
job.setMapperClass(DTMap.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DataBean.class);
job.setReducerClass(DTReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DataBean.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1); //等待MapReduce执行完成并打印作业进度详情
}
}
/**
* 实现Writable接口,重写Write方法和readFields方法,严格按字段顺序进行写入写出
* @author yao
*
*/
class DataBean implements Writable {
private String telNo;
private long upPayLoad;
private long downPayLoad;
private long totalPayLoad;
public DataBean(){
}
public DataBean(String telNo, long upPayLoad, long downPayLoad) {
super();
this.telNo = telNo;
this.upPayLoad = upPayLoad;
this.downPayLoad = downPayLoad;
this.totalPayLoad = upPayLoad + downPayLoad;
}
@Override
public void readFields(DataInput in) throws IOException {
this.telNo = in.readUTF();
this.upPayLoad = in.readLong();
this.downPayLoad = in.readLong();
this.totalPayLoad = in.readLong();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(telNo);
out.writeLong(upPayLoad);
out.writeLong(downPayLoad);
out.writeLong(totalPayLoad);
}
@Override
public String toString() {
return this.telNo+"\t"+this.upPayLoad+"\t"+this.downPayLoad+"\t"+this.totalPayLoad;
}
public String getTelNo() {
return telNo;
}
public void setTelNo(String telNo) {
this.telNo = telNo;
}
public long getUpPayLoad() {
return upPayLoad;
}
public void setUpPayLoad(long upPayLoad) {
this.upPayLoad = upPayLoad;
}
public long getDownPayLoad() {
return downPayLoad;
}
public void setDownPayLoad(long downPayLoad) {
this.downPayLoad = downPayLoad;
}
public long getTotalPayLoad() {
return totalPayLoad;
}
public void setTotalPayLoad(long totalPayLoad) {
this.totalPayLoad = totalPayLoad;
}
}
hadoop2.2.0 MapReduce的序列化