首页 > 代码库 > hadoop2.2.0 MapReduce的序列化

hadoop2.2.0 MapReduce的序列化

package com.my.hadoop.mapreduce.dataformat;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import com.my.hadoop.common.Configs;



/**
 * hadoop的序列化
 * @author yao
 *
 */
public class DataCount {

    static class DTMap extends Mapper<LongWritable, Text, Text, DataBean>{
        DataBean dataBean = null;
        @Override
        public void map(LongWritable key, Text value, Context context) throws IOException ,InterruptedException {
            String[] fields = value.toString().split("\t");
            String telNo = fields[1];
            long upPayLoad = Long.parseLong(fields[8]);
            long downPayLoad = Long.parseLong(fields[9]);
            dataBean = new DataBean(telNo, upPayLoad, downPayLoad);
            context.write(new Text(telNo), dataBean);
        }
    }
    
    static class DTReduce extends Reducer<Text, DataBean, Text, DataBean>{
        @Override
        public void reduce(Text key, Iterable<DataBean> dataBeans, Context context) throws IOException ,InterruptedException {
            long upPayLoad = 0;
            long downPayLoad = 0;
            for (DataBean dataBean : dataBeans) {
                upPayLoad += dataBean.getUpPayLoad();
                downPayLoad += dataBean.getDownPayLoad();
            }
            DataBean dataBean = new DataBean("", upPayLoad, downPayLoad);
            context.write(key, dataBean);
        }
    }
    
    public static void main(String[] args) throws Exception {
        Configuration conf = Configs.getConfigInstance();
        
        String[] paths = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (paths.length != 2) {
            System.err.println("Usage: " + DataCount.class.getName() + " <in> <out>");
            System.exit(2);
        }
        
        Job job = Job.getInstance(conf, DataCount.class.getSimpleName());
        job.setJarByClass(DataCount.class);                                //设置main函数所在的类
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        job.setMapperClass(DTMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(DataBean.class);
        
        job.setReducerClass(DTReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(DataBean.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        System.exit(job.waitForCompletion(true) ? 0 : 1);                //等待MapReduce执行完成并打印作业进度详情
        
    }

}

/**
 * 实现Writable接口,重写Write方法和readFields方法,严格按字段顺序进行写入写出
 * @author yao
 *
 */
class DataBean implements Writable {

    private String telNo;
    private long upPayLoad;
    private long downPayLoad;
    private long totalPayLoad;
    
    public DataBean(){
        
    }
    
    public DataBean(String telNo, long upPayLoad, long downPayLoad) {
        super();
        this.telNo = telNo;
        this.upPayLoad = upPayLoad;
        this.downPayLoad = downPayLoad;
        this.totalPayLoad = upPayLoad + downPayLoad;
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.telNo = in.readUTF();
        this.upPayLoad = in.readLong();
        this.downPayLoad = in.readLong();
        this.totalPayLoad = in.readLong();
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(telNo);
        out.writeLong(upPayLoad);
        out.writeLong(downPayLoad);
        out.writeLong(totalPayLoad);
    }

    @Override
    public String toString() {
        return this.telNo+"\t"+this.upPayLoad+"\t"+this.downPayLoad+"\t"+this.totalPayLoad;
    }

    public String getTelNo() {
        return telNo;
    }

    public void setTelNo(String telNo) {
        this.telNo = telNo;
    }

    public long getUpPayLoad() {
        return upPayLoad;
    }

    public void setUpPayLoad(long upPayLoad) {
        this.upPayLoad = upPayLoad;
    }

    public long getDownPayLoad() {
        return downPayLoad;
    }

    public void setDownPayLoad(long downPayLoad) {
        this.downPayLoad = downPayLoad;
    }

    public long getTotalPayLoad() {
        return totalPayLoad;
    }

    public void setTotalPayLoad(long totalPayLoad) {
        this.totalPayLoad = totalPayLoad;
    }

}

hadoop2.2.0 MapReduce的序列化