首页 > 代码库 > 【python,threading】python多线程

【python,threading】python多线程

使用多线程的方式

1、  函数式:使用threading模块threading.Thread(e.g target name parameters)

 1 import time,threading 2 def loop(): 3     print("thread %s is running..." % threading.current_thread().name)  4     n = 0 5     while n < 5: 6         n += 1 7         print("thread %s is running... n = %s" % (threading.current_thread().name,str(n)))  8         time.sleep(1) 9     print("thread %s is over..." % threading.current_thread().name) 10     11 print("thread %s is running..." % threading.current_thread().name) 12 13 ts = []14 for i in range(5):15     t = threading.Thread(target = loop, name = loopThread + str(i))16     t.start()17     ts.append(t)18 for t in ts:19     t.join()20 print("thread %s is over..." % threading.current_thread().name) 

多线程的输出:

thread MainThread is running...thread loopThread 0 is running...thread loopThread 0 is running... n = 1thread loopThread 1 is running...thread loopThread 1 is running... n = 1thread loopThread 2 is running...thread loopThread 2 is running... n = 1thread loopThread 0 is running... n = 2thread loopThread 1 is running... n = 2thread loopThread 2 is running... n = 2thread loopThread 0 is running... n = 3thread loopThread 1 is running... n = 3thread loopThread 2 is running... n = 3thread loopThread 0 is running... n = 4thread loopThread 1 is running... n = 4thread loopThread 2 is running... n = 4thread loopThread 0 is running... n = 5thread loopThread 1 is running... n = 5thread loopThread 2 is running... n = 5thread loopThread 0 is over...thread loopThread 1 is over...thread loopThread 2 is over...thread MainThread is over...

python中得thread的一些机制和C/C++不同:在C/C++中,主线程结束后,其子线程会默认被主线程kill掉。而在python中,主线程结束后,会默认等待子线程结束后,主线程才退出。

python对于thread的管理中有两个函数:join和setDaemon

join:如在一个线程B中调用threada.join(),则threada结束后,线程B才会接着threada.join()往后运行。

setDaemon:主线程A启动了子线程B,调用b.setDaemaon(True),则主线程结束时,会把子线程B也杀死。【此段内容摘录自junshao90的博客】

2. 使用面向对象方式。创建子类继承自threading.Thread,需overwrite run方法

 1 import time,threading 2 class threadTest(threading.Thread):     3     def __init__(self,tname): 4         threading.Thread.__init__(self) 5         self.name = tname     6     def run(self): 7         print("thread %s is running..." % threading.current_thread().name)  8         n = 0 9         while n < 5:10             n += 111             print("thread %s is running... n = %s" % (threading.current_thread().name,str(n))) 12             time.sleep(1)13         print("thread %s is over..." % threading.current_thread().name)         14 print("thread %s is running..." % threading.current_thread().name)   15 16 for i in range(3):17     t = threadTest(t + str(i))18     t.start()19     t.join()20 print("thread %s is over..." % threading.current_thread().name) 

运行输出:

thread MainThread is running...thread t0 is running...thread t0 is running... n = 1thread t0 is running... n = 2thread t0 is running... n = 3thread t0 is running... n = 4thread t0 is running... n = 5thread t0 is over...thread t1 is running...thread t1 is running... n = 1thread t1 is running... n = 2thread t1 is running... n = 3thread t1 is running... n = 4thread t1 is running... n = 5thread t1 is over...thread t2 is running...thread t2 is running... n = 1thread t2 is running... n = 2thread t2 is running... n = 3thread t2 is running... n = 4thread t2 is running... n = 5thread t2 is over...thread MainThread is over...

3. lock

 多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响。

 而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把  内容给改乱了。

lock 对象:

acquire():负责取得一个锁。如果没有线程正持有锁,acquire方法会立刻得到锁。否则,它闲意态等锁被释放。一旦acquire()返回,调用它的线程就持有锁。

release(): 释放锁。如果有其他线程正等待这个锁(通过acquire()),当release()被效用的时候,它们中的一个线程就会

被唤醒

以下内容摘自“廖雪峰的官方网站”

http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001386832360548a6491f20c62d427287739fcfa5d5be1f000
balance为共享资源,多进程同时执行,一定概率结果为balance != 0[详细描述见原文]
def change_it(n):    # 先存后取,结果应该为0:    global balance    balance = balance + n    balance = balance - n

使用threading.Lock()

import threadingtotal = 0lock = threading.Lock()def change(n):    global total    total += n    total -= ndef run_thread(n):    lock.acquire()    for i in range(100000):        change(n)    lock.release()    t1 = threading.Thread(target = run_thread, args=(5,))t2 = threading.Thread(target = run_thread, args=(8,))t1.start()t2.start()t1.join()t2.join()print(total)

 4. 其他详细关于对进程的资料可参考

 解决共享资源问题的:条件变量,同步队列

 Vamei的博客Python标准库08 多线程与同步 (threading包)

 片片灵感的博客Python多线程学习

【python,threading】python多线程