首页 > 代码库 > 中国mooc北京理工大学机器学习第二周(三):手写数字识别

中国mooc北京理工大学机器学习第二周(三):手写数字识别

利用sklearn中的神经网络进行数字识别。

先简单搬运占坑,暂时用不到。

    import numpy as np     #导入numpy工具包
    from os import listdir #使用listdir模块,用于访问本地文件
    from sklearn.neural_network import MLPClassifier 
     
    def img2vector(fileName):    
        retMat = np.zeros([1024],int) #定义返回的矩阵,大小为1*1024
        fr = open(fileName)           #打开包含32*32大小的数字文件 
        lines = fr.readlines()        #读取文件的所有行
        for i in range(32):           #遍历文件所有行
            for j in range(32):       #并将01数字存放在retMat中     
                retMat[i*32+j] = lines[i][j]    
        return retMat
     
    def readDataSet(path):    
        fileList = listdir(path)    #获取文件夹下的所有文件 
        numFiles = len(fileList)    #统计需要读取的文件的数目
        dataSet = np.zeros([numFiles,1024],int) #用于存放所有的数字文件
        hwLabels = np.zeros([numFiles,10])      #用于存放对应的one-hot标签
        for i in range(numFiles):   #遍历所有的文件
            filePath = fileList[i]  #获取文件名称/路径      
            digit = int(filePath.split(_)[0])  #通过文件名获取标签      
            hwLabels[i][digit] = 1.0        #将对应的one-hot标签置1
            dataSet[i] = img2vector(path +/+filePath) #读取文件内容   
        return dataSet,hwLabels
     
    #read dataSet
    train_dataSet, train_hwLabels = readDataSet(trainingDigits)
     
    clf = MLPClassifier(hidden_layer_sizes=(100,),
                        activation=logistic, solver=adam,
                        learning_rate_init = 0.0001, max_iter=2000)
    print(clf)
    clf.fit(train_dataSet,train_hwLabels)
     
    #read  testing dataSet
    dataSet,hwLabels = readDataSet(testDigits)
    res = clf.predict(dataSet)   #对测试集进行预测
    error_num = 0                #统计预测错误的数目
    num = len(dataSet)           #测试集的数目
    for i in range(num):         #遍历预测结果
        #比较长度为10的数组,返回包含01的数组,0为不同,1为相同
        #若预测结果与真实结果相同,则10个数字全为1,否则不全为1
        if np.sum(res[i] == hwLabels[i]) < 10: 
            error_num += 1                     
    print("Total num:",num," Wrong num:",           error_num,"  WrongRate:",error_num / float(num))

如果使用knn算法

    import numpy as np     #导入numpy工具包
    from os import listdir #使用listdir模块,用于访问本地文件
    from sklearn import neighbors
     
    def img2vector(fileName):    
        retMat = np.zeros([1024],int) #定义返回的矩阵,大小为1*1024
        fr = open(fileName)           #打开包含32*32大小的数字文件 
        lines = fr.readlines()        #读取文件的所有行
        for i in range(32):           #遍历文件所有行
            for j in range(32):       #并将01数字存放在retMat中     
                retMat[i*32+j] = lines[i][j]    
        return retMat
     
    def readDataSet(path):    
        fileList = listdir(path)    #获取文件夹下的所有文件 
        numFiles = len(fileList)    #统计需要读取的文件的数目
        dataSet = np.zeros([numFiles,1024],int)    #用于存放所有的数字文件
        hwLabels = np.zeros([numFiles])#用于存放对应的标签(与神经网络的不同)
        for i in range(numFiles):      #遍历所有的文件
            filePath = fileList[i]     #获取文件名称/路径   
            digit = int(filePath.split(_)[0])   #通过文件名获取标签     
            hwLabels[i] = digit        #直接存放数字,并非one-hot向量
            dataSet[i] = img2vector(path +/+filePath)    #读取文件内容 
        return dataSet,hwLabels
     
    #read dataSet
    train_dataSet, train_hwLabels = readDataSet(trainingDigits)
    knn = neighbors.KNeighborsClassifier(algorithm=kd_tree, n_neighbors=3)
    knn.fit(train_dataSet, train_hwLabels)
     
    #read  testing dataSet
    dataSet,hwLabels = readDataSet(testDigits)
     
    res = knn.predict(dataSet)  #对测试集进行预测
    error_num = np.sum(res != hwLabels) #统计分类错误的数目
    num = len(dataSet)          #测试集的数目
    print("Total num:",num," Wrong num:",           error_num,"  WrongRate:",error_num / float(num))

以后填。

:)

 

中国mooc北京理工大学机器学习第二周(三):手写数字识别