首页 > 代码库 > 层次聚类与K-means
层次聚类与K-means
- Hierarchical clustering(层次聚类)
作用:Clustering organizes things that are close into groups
算法步骤:
a).Find closest two thing
b).Put them together
c).Find next closest
算法结果:A tree showing how close things are to each other
http://gallery.r-enthusiasts.com/RGraphGallery.php?graph=79
- K-means
作用:Final estimate of cluster centroids
算法步骤:
a)Fix a number of clusters
b) Get “centroids” of each cluster
c)Assign things to closest centroid
d)Reclaculate centroids
算法结果:按设定的cluster值分成相应和groups.
层次聚类与K-means
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。