首页 > 代码库 > spark1.1.0源码阅读-dagscheduler and stage

spark1.1.0源码阅读-dagscheduler and stage

1. rdd action ->sparkContext.runJob->dagscheduler.runJob

 1   def runJob[T, U: ClassTag]( 2       rdd: RDD[T], 3       func: (TaskContext, Iterator[T]) => U, 4       partitions: Seq[Int], 5       callSite: String, 6       allowLocal: Boolean, 7       resultHandler: (Int, U) => Unit, 8       properties: Properties = null) 9   {10     val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)11     waiter.awaitResult() match {12       case JobSucceeded => {}13       case JobFailed(exception: Exception) =>14         logInfo("Failed to run " + callSite)15         throw exception16     }17   }

2. sumbitJob

 1   /** 2    * Submit a job to the job scheduler and get a JobWaiter object back. The JobWaiter object 3    * can be used to block until the the job finishes executing or can be used to cancel the job. 4    */ 5   def submitJob[T, U]( 6       rdd: RDD[T], 7       func: (TaskContext, Iterator[T]) => U, 8       partitions: Seq[Int], 9       callSite: String,10       allowLocal: Boolean,11       resultHandler: (Int, U) => Unit,12       properties: Properties = null): JobWaiter[U] =13   {14     // Check to make sure we are not launching a task on a partition that does not exist.15     val maxPartitions = rdd.partitions.length16     partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>17       throw new IllegalArgumentException(18         "Attempting to access a non-existent partition: " + p + ". " +19           "Total number of partitions: " + maxPartitions)20     }21 22     val jobId = nextJobId.getAndIncrement()23     if (partitions.size == 0) {24       return new JobWaiter[U](this, jobId, 0, resultHandler)25     }26 27     assert(partitions.size > 0)28     val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]29     val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)30     eventProcessActor ! JobSubmitted(31       jobId, rdd, func2, partitions.toArray, allowLocal, callSite, waiter, properties) //向eventProcessActor发送消息,有个疑问:此处rdd怎么变成message?是将元数据(partition等位置信息)序列化吗?32     waiter33   }

3. DAGSchedulerEventProcessActor

 1 private[scheduler] class DAGSchedulerEventProcessActor(dagScheduler: DAGScheduler) 2   extends Actor with Logging { 3  4   override def preStart() { 5     // set DAGScheduler for taskScheduler to ensure eventProcessActor is always 6     // valid when the messages arrive 7     dagScheduler.taskScheduler.setDAGScheduler(dagScheduler) 8   } 9 10   /**11    * The main event loop of the DAG scheduler.12    */13   def receive = {14     case JobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties) =>15       dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite,16         listener, properties)17 18     case StageCancelled(stageId) =>19       dagScheduler.handleStageCancellation(stageId)20 21     case JobCancelled(jobId) =>22       dagScheduler.handleJobCancellation(jobId)23 24     case JobGroupCancelled(groupId) =>25       dagScheduler.handleJobGroupCancelled(groupId)26 27     case AllJobsCancelled =>28       dagScheduler.doCancelAllJobs()

4. actor调用 handleJobSubmitted

 1   private[scheduler] def handleJobSubmitted(jobId: Int, 2       finalRDD: RDD[_], 3       func: (TaskContext, Iterator[_]) => _, 4       partitions: Array[Int], 5       allowLocal: Boolean, 6       callSite: String, 7       listener: JobListener, 8       properties: Properties = null) 9   {10     var finalStage: Stage = null11     try {12       // New stage creation may throw an exception if, for example, jobs are run on a13       // HadoopRDD whose underlying HDFS files have been deleted.14       finalStage = newStage(finalRDD, partitions.size, None, jobId, Some(callSite))15     } catch {16       case e: Exception =>17         logWarning("Creating new stage failed due to exception - job: " + jobId, e)18         listener.jobFailed(e)19         return20     }21     if (finalStage != null) {22       val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties)23       clearCacheLocs()24       logInfo("Got job %s (%s) with %d output partitions (allowLocal=%s)".format(25         job.jobId, callSite, partitions.length, allowLocal))26       logInfo("Final stage: " + finalStage + "(" + finalStage.name + ")")27       logInfo("Parents of final stage: " + finalStage.parents)28       logInfo("Missing parents: " + getMissingParentStages(finalStage))29       if (allowLocal && finalStage.parents.size == 0 && partitions.length == 1) {30         // Compute very short actions like first() or take() with no parent stages locally.31         listenerBus.post(SparkListenerJobStart(job.jobId, Array[Int](), properties))32         runLocally(job) //如果只有一个parition,而且没有parent,并运行本地运行,则单独起一个线程执行33       } else {34         jobIdToActiveJob(jobId) = job35         activeJobs += job36         resultStageToJob(finalStage) = job37         listenerBus.post(SparkListenerJobStart(job.jobId, jobIdToStageIds(jobId).toArray,38           properties))39         submitStage(finalStage)40       }41     }42     submitWaitingStages()43   }
 1   /** 2    * Create a Stage -- either directly for use as a result stage, or as part of the (re)-creation 3    * of a shuffle map stage in newOrUsedStage.  The stage will be associated with the provided 4    * jobId. Production of shuffle map stages should always use newOrUsedStage, not newStage 5    * directly. 6    */ 7   private def newStage( 8       rdd: RDD[_], 9       numTasks: Int,10       shuffleDep: Option[ShuffleDependency[_,_]],11       jobId: Int,12       callSite: Option[String] = None)13     : Stage =14   {15     val id = nextStageId.getAndIncrement()16     val stage =17       new Stage(id, rdd, numTasks, shuffleDep, getParentStages(rdd, jobId), jobId, callSite)18     stageIdToStage(id) = stage19     updateJobIdStageIdMaps(jobId, stage)20     stageToInfos(stage) = StageInfo.fromStage(stage)21     stage22   }
 1   /** 2    * Run a job on an RDD locally, assuming it has only a single partition and no dependencies. 3    * We run the operation in a separate thread just in case it takes a bunch of time, so that we 4    * don‘t block the DAGScheduler event loop or other concurrent jobs. 5    */ 6   protected def runLocally(job: ActiveJob) { 7     logInfo("Computing the requested partition locally") 8     new Thread("Local computation of job " + job.jobId) { 9       override def run() {10         runLocallyWithinThread(job)11       }12     }.start()13   }

5. submitStage: 如果parent stage有缺失,

 1   /** Submits stage, but first recursively submits any missing parents. */ 2   private def submitStage(stage: Stage) { 3     val jobId = activeJobForStage(stage) 4     if (jobId.isDefined) { 5       logDebug("submitStage(" + stage + ")") 6       if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) { 7         val missing = getMissingParentStages(stage).sortBy(_.id)  8         logDebug("missing: " + missing) 9         if (missing == Nil) {10           logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")11           submitMissingTasks(stage, jobId.get) 12           runningStages += stage13         } else {14           for (parent <- missing) {15             submitStage(parent)16           }17           waitingStages += stage18         }19       }20     } else {21       abortStage(stage, "No active job for stage " + stage.id)22     }23   }
 1   private def getMissingParentStages(stage: Stage): List[Stage] = { 2     val missing = new HashSet[Stage] 3     val visited = new HashSet[RDD[_]] 4     def visit(rdd: RDD[_]) { 5       if (!visited(rdd)) { 6         visited += rdd 7         if (getCacheLocs(rdd).contains(Nil)) {//如果cacheLocs包含Nil,则认为此rdd miss了 8           for (dep <- rdd.dependencies) { 9             dep match { //分两种情况:shufDep和narrowDep,前者会生成shuffleMapStage,后者会递归访问10               case shufDep: ShuffleDependency[_,_] =>11                 val mapStage = getShuffleMapStage(shufDep, stage.jobId)12                 if (!mapStage.isAvailable) {13                   missing += mapStage14                 }15               case narrowDep: NarrowDependency[_] =>16                 visit(narrowDep.rdd)17             }18           }19         }20       }21     }22     visit(stage.rdd)23     missing.toList24   }

6. submitMissTasks

 1   /** Called when stage‘s parents are available and we can now do its task. */ 2   private def submitMissingTasks(stage: Stage, jobId: Int) { 3     logDebug("submitMissingTasks(" + stage + ")") 4     // Get our pending tasks and remember them in our pendingTasks entry 5     val myPending = pendingTasks.getOrElseUpdate(stage, new HashSet) 6     myPending.clear() 7     var tasks = ArrayBuffer[Task[_]]() 8     if (stage.isShuffleMap) { 9       for (p <- 0 until stage.numPartitions if stage.outputLocs(p) == Nil) { //将stage中存储空间outputLocas为Nil的patition生成一个shuffleMapTask10         val locs = getPreferredLocs(stage.rdd, p)11         tasks += new ShuffleMapTask(stage.id, stage.rdd, stage.shuffleDep.get, p, locs)12       }13     } else {14       // This is a final stage; figure out its job‘s missing partitions15       val job = resultStageToJob(stage)16       for (id <- 0 until job.numPartitions if !job.finished(id)) {17         val partition = job.partitions(id)18         val locs = getPreferredLocs(stage.rdd, partition)19         tasks += new ResultTask(stage.id, stage.rdd, job.func, partition, locs, id) //生成resultTask20       }21     }22 23     val properties = if (jobIdToActiveJob.contains(jobId)) {24       jobIdToActiveJob(stage.jobId).properties25     } else {26       // this stage will be assigned to "default" pool27       null28     }29 30     // must be run listener before possible NotSerializableException31     // should be "StageSubmitted" first and then "JobEnded"32     listenerBus.post(SparkListenerStageSubmitted(stageToInfos(stage), properties))33 34     if (tasks.size > 0) {35       // Preemptively serialize a task to make sure it can be serialized. We are catching this36       // exception here because it would be fairly hard to catch the non-serializable exception37       // down the road, where we have several different implementations for local scheduler and38       // cluster schedulers.39       try {40         SparkEnv.get.closureSerializer.newInstance().serialize(tasks.head)41       } catch {42         case e: NotSerializableException =>43           abortStage(stage, "Task not serializable: " + e.toString)44           runningStages -= stage45           return46       }47 48       logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")49       myPending ++= tasks50       logDebug("New pending tasks: " + myPending)51       taskScheduler.submitTasks(52         new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties)) //将这些task生成一个taskSet,并调用taskScheduler.submitTasks53       stageToInfos(stage).submissionTime = Some(System.currentTimeMillis())54     } else {55       logDebug("Stage " + stage + " is actually done; %b %d %d".format(56         stage.isAvailable, stage.numAvailableOutputs, stage.numPartitions))57       runningStages -= stage58     }59   }

7. taskSet: 某个rdd的一部分parition missing了,会通过上面的步骤找到,并将这些partition生成对应的tasks,通过taskSet来一起调度。

 1 /** 2  * A set of tasks submitted together to the low-level TaskScheduler, usually representing 3  * missing partitions of a particular stage. 4  */ 5 private[spark] class TaskSet( 6     val tasks: Array[Task[_]], 7     val stageId: Int, 8     val attempt: Int, 9     val priority: Int,10     val properties: Properties) {11     val id: String = stageId + "." + attempt12 13   def kill(interruptThread: Boolean) {14     tasks.foreach(_.kill(interruptThread))15   }16 17   override def toString: String = "TaskSet " + id18 }

8. taskScheduler.submitTasks

 1   override def submitTasks(taskSet: TaskSet) { 2     val tasks = taskSet.tasks 3     logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks") 4     this.synchronized { 5       val manager = new TaskSetManager(this, taskSet, maxTaskFailures) 6       activeTaskSets(taskSet.id) = manager 7       schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties) 8  9       if (!isLocal && !hasReceivedTask) {10         starvationTimer.scheduleAtFixedRate(new TimerTask() {11           override def run() {12             if (!hasLaunchedTask) {13               logWarning("Initial job has not accepted any resources; " +14                 "check your cluster UI to ensure that workers are registered " +15                 "and have sufficient memory")16             } else {17               this.cancel()18             }19           }20         }, STARVATION_TIMEOUT, STARVATION_TIMEOUT)21       }22       hasReceivedTask = true23     }24     backend.reviveOffers()25   }

 

spark1.1.0源码阅读-dagscheduler and stage