首页 > 代码库 > 21、三元表达式、列表解析、生成器
21、三元表达式、列表解析、生成器
一、三元表达式
格式:result=值1 if x<y else 值2
满足if条件result=值1,否则result=值2
>>> 3 if 3>2 else 10 >>> 3 if 3>4 else 10 >>> 3+2 if 3>0 else 3-1 >>> 3+2 if 3>0 and 3>4 else 3-1
二、列表解析
1 s=‘hello‘ 2 res=[i.upper() for i in s] 3 print(res) 4 5 [‘H‘,‘E‘,‘L‘,‘L‘,‘O‘]
l=[1,31,73,84,57,22] l_new=[] #一般写法 for i in l: if i > 50: l_new.append(i) print(l_new) #解析式写法 res=[i for i in l if i > 50] print(res)
for i in obj1: if 条件1: for i in obj2: if 条件2: for i in obj3: if 条件3: ... l=[1,31,73,84,57,22] print([i for i in l if i > 50]) print([i for i in l if i < 50]) print([i for i in l if i > 20 and i < 50])
三、生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>> next(g) >>> next(g) >>> next(g) >>> next(g) >>> next(g) >>> next(g) >>> next(g) >>> next(g) >>> next(g) >>> next(g) >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我们讲过,generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
当然,上面这种不断调用next(g)
实在是太变态了,正确的方法是使用for
循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 1 9 25 49 81
所以,我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for
循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return ‘done‘
注意,赋值语句:
a, b = b, a + b
相当于:
t = (b, a + b) # t是一个tuple a = t[0] b = t[1]
但不必显式写出临时变量t就可以赋值。
上面的函数可以输出斐波那契数列的前N个数:
>>> fib(6) 1 3 8 ‘done‘
仔细观察,可以看出,fib
函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return ‘done‘
这就是定义generator的另一种方法。
如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。
而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
def odd(): print(‘step 1‘) yield 1 print(‘step 2‘) yield(3) print(‘step 3‘) yield(5)
调用该generator时,首先要生成一个generator对象,然后用next()
函数不断获得下一个返回值:
>>> o = odd() >>> next(o) step 1 >>> next(o) step 2 >>> next(o) step 3 >>> next(o) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
可以看到,odd
不是普通函数,而是generator,在执行过程中,遇到yield
就中断,下次又继续执行。执行3次yield
后,已经没有yield
可以执行了,所以,第4次调用next(o)
就报错。
回到fib
的例子,我们在循环过程中不断调用yield
,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()
来获取下一个返回值,而是直接使用for
循环来迭代:
>>> for n in fib(6): ... print(n) ... 1 3 8
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
>>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print(‘g:‘, x) ... except StopIteration as e: ... print(‘Generator return value:‘, e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done
生成器就是迭代器
yield的功能:
1.与return类似,都可以返回值,但不一样的地方在于yield返回多次值,而return只能返回一次值
2.为函数封装好了__iter__和__next__方法,把函数的执行结果做成了迭代器
3.遵循迭代器的取值方式obj.__next__(),触发的函数的执行,函数暂停与再继续的状态都是由yield保存的
d={‘a‘:1,‘b‘:2,‘c‘:3} obj=d.__iter__() while True: try: i=obj.__next__() print(i) except StopIteration: break
def foo(): print(‘first‘) yield 1 print(‘second‘) yield 2 print(‘third‘) yield 3 print(‘fouth‘) g=foo() for i in g: print(i)
import time def countdown(n): print(‘start---->‘) while n>=0: yield n time.sleep(1) n-=1 print(‘stop---->‘) g=countdown(5) for i in g: print(i)
动态查看文件最后一行,并过滤显示。
import time def tail(filepath,encoding=‘utf-8‘): with open(filepath,encoding=encoding) as f: f.seek(0,2) while True: line=f.readline() if line: yield line else: time.sleep(0.5) def grep(lines,pattern): for line in lines: if pattern in line: yield line g1=tail(‘day9.txt‘) g2=grep(g1, ‘error‘) g3=grep(g2, ‘404‘) for i in g3: print(i)
21、三元表达式、列表解析、生成器