首页 > 代码库 > opencv2实现多张图片路线路牌检测_计算机视觉大作业2
opencv2实现多张图片路线路牌检测_计算机视觉大作业2
linefinder.h同上一篇博文
main.cpp
/*------------------------------------------------------------------------------------------*This file contains material supporting chapter 7 of the cookbook: Computer Vision Programming using the OpenCV Library. by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify, and distribute this source code, or portions thereof, for any purpose, without fee, subject to the restriction that the copyright notice may not be removed or altered from any source or altered source distribution. The software is released on an as-is basis and without any warranties of any kind. In particular, the software is not guaranteed to be fault-tolerant or free from failure. The author disclaims all warranties with regard to this software, any use, and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name \*------------------------------------------------------------------------------------------*/ #include <iostream> #include <vector> #include <opencv2/core/core.hpp> //#include <opencv2/imageproc/imageproc.hpp> #include <opencv2/highgui/highgui.hpp> #include<string> #include <sstream> #include "linefinder.h" //#include "edgedetector.h" using namespace cv; using namespace std; #define PI 3.1415926 int main() { stringstream ss; string str; for(int i=1;i<=80;i++) { str="D:\\大学课程\\智能技术2-2\\视觉作业\\视觉作业\\作业2014\\作业2\\";//选择F:\\图片\\中的5张图片 ss.clear(); ss<<str; ss<<i; ss<<".jpg"; ss>>str; Mat image=imread(str,1); // Read input image //Mat image= imread("1.jpg",1); if (!image.data) return 0; /*namedWindow("Original Image"); imshow("Original Image",image);*/ Mat img=image(Rect(0.4*image.cols,0.58*image.rows,0.4*image.cols,0.3*image.rows)); Mat contours; Canny(img,contours,80,100); cv::Mat contoursInv; cv::threshold(contours,contoursInv,128,255,cv::THRESH_BINARY_INV); // Display the image of contours /*cv::namedWindow("Canny Contours"); cv::imshow("Canny Contours",contoursInv);*/ // Create LineFinder instance LineFinder ld; // Set probabilistic Hough parameters ld.setLineLengthAndGap(80,30); ld.setMinVote(30); vector<Vec4i> li= ld.findLines(contours); ld.drawDetectedLines(img); /*namedWindow(" HoughP"); imshow(" HoughP",img);*/ /*namedWindow("Detected Lines with HoughP"); imshow("Detected Lines with HoughP",image);*/ Mat imgGry; cvtColor(image,imgGry,CV_BGR2GRAY); GaussianBlur(imgGry,imgGry,Size(5,5),1.5); vector<Vec3f> circles; HoughCircles(imgGry, circles, CV_HOUGH_GRADIENT, 2, // accumulator resolution (size of the image / 2) 50, // minimum distance between two circles 200, // Canny high threshold 100, // minimum number of votes 25, 50); // min and max radius cout << "Circles: " << circles.size() << endl; // Draw the circles vector<Vec3f>::const_iterator itc= circles.begin(); while (itc!=circles.end()) { circle(image, Point((*itc)[0], (*itc)[1]), // circle centre (*itc)[2], // circle radius Scalar(255), // color 2); // thickness ++itc; } namedWindow(str); imshow(str,image); } waitKey(); return 0; }
opencv2实现多张图片路线路牌检测_计算机视觉大作业2
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。