首页 > 代码库 > [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$. In terms of an orthonormal basis of $\scrH$, write an element of $(\wedge^3\scrH )\oplus \vee^3\scrH)^\perp$.
Solution. Let $e_1,e_2,e_3$ be an orthonormal basis of $\scrH$, then $$\bex e_1\otimes e_1\otimes e_1-e_1\otimes e_1\otimes e_2\in (\wedge^3\scrH )\oplus \vee^3\scrH)^\perp. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。