首页 > 代码库 > [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.1
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.1
For fixed basis of in $\scrH$ and $\scrK$, the matrix $A^*$ is the conjugate transpose of the matrix of $A$.
Solution. $$\beex \bea (A^*)_{ij}&=e_i^*A^*f_j\\ &=\sef{e_i,A^*f_j}_\scrH\\ &=\sef{Ae_i,f_j}_\scrK\\ &=\overline{\sef{f_j,Ae_i}}\\ &=\overline{a}_{ji}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.1
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。