首页 > 代码库 > <Spark Streaming><本地调试>

<Spark Streaming><本地调试>

写在前面

  • 因为本地电脑没装flume,nginx各种。所以之前写Streaming程序的时候,都是打包了放到集群上跑。就算我在程序代码里不停地logger,调试起来也hin不方便。
  • 于是本地写了两个程序,在intellj调试。
  • 主要就是包括两个程序:
    • 一个是GenerateChar.scala用来向某个指定端口,使用socket发消息;
    • 另一个就是要测试的Streaming程序了。

GenerateChar

package com.wttttt.spark

import java.io.PrintWriter
import java.net.ServerSocket

/**
  * Created with IntelliJ IDEA.
  * Description: 
  * Author: wttttt
  * Github: https://github.com/wttttt-wang/hadoop_inaction
  * Date: 2017-05-19
  * Time: 10:19
  */
object GenerateChar {
  def main(args: Array[String]) {
    val listener = new ServerSocket(9998)
    while(true){
      val socket = listener.accept()
      new Thread(){
        override def run() = {
          println("Got client connected from :"+ socket.getInetAddress)
          val out = new PrintWriter(socket.getOutputStream,true)
          while(true){
            Thread.sleep(3000)
            val context1 = "GET /result.html?Input=test1 HTTP/1.1"
            println(context1)
            val context2 = "GET /result.html?Input=test2 HTTP/1.1"
            println(context2)
            val context3 = "GET /result.html?Input=test3 HTTP/1.1"
            println(context3)
            out.write(context1 + ‘\n‘ + context2 + "\n" + context2 + "\n" + context3 + "\n" + context3 + "\n" + context3 + "\n" + context3 + "\n")
            out.flush()
          }
          socket.close()
        }
      }.start()
    }
  }
}
  •  要发送的数据就根据需要自定义。

streaming

  • streaming这边就是要调试的程序啦。
    • 一方面是,Mater设置成local[x],x > 1,因为这里需要receivers来接收数据。
    • 另一方面,设置一个本地checkpoint目录
val conf = new SparkConf()
      .setMaster("local[2]")
      .setAppName("LocalTest")
    // WARN StreamingContext: spark.master should be set as local[n], n > 1 in local mode if you have receivers to get data,
    // otherwise Spark jobs will not get resources to process the received data.
    val sc = new StreamingContext(conf, Milliseconds(5000))
    sc.checkpoint("flumeCheckpoint/")
  • 测试的时候就各种打log,做输出啦,hin方便哒

<Spark Streaming><本地调试>