首页 > 代码库 > lucene索引并搜索mysql数据库[转]
lucene索引并搜索mysql数据库[转]
由于对lucene比较感兴趣,本人在网上找了点资料,终于成功地用lucene对mysql数据库进行索引创建并成功搜索,先总结如下:
首先介绍一个jdbc工具类,用于得到Connection对象:
- import java.sql.Connection;
- import java.sql.DriverManager;
- import java.sql.SQLException;
- /**
- * JdbcUtil.java
- * @version 1.0
- * @createTime JDBC获取Connection工具类
- */
- public class JdbcUtil {
- private static Connection conn = null;
- private static final String URL = "jdbc:mysql://127.0.0.1/project?autoReconnect=true&characterEncoding=utf8";
- private static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";
- private static final String USER_NAME = "root";
- private static final String PASSWORD = "";
- public static Connection getConnection() {
- try {
- Class.forName(JDBC_DRIVER);
- conn = DriverManager.getConnection(URL, USER_NAME, PASSWORD);
- } catch (ClassNotFoundException e) {
- e.printStackTrace();
- } catch (SQLException e) {
- e.printStackTrace();
- }
- return conn;
- }
- }
然后就是本文的主要内容了,对数据库信息进行索引与对索引进行搜索:
- import java.io.File;
- import java.sql.Connection;
- import java.sql.ResultSet;
- import java.sql.Statement;
- import java.util.ArrayList;
- import java.util.List;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.document.Field;
- import org.apache.lucene.document.Field.TermVector;
- import org.apache.lucene.index.IndexWriter;
- import org.apache.lucene.queryParser.QueryParser;
- import org.apache.lucene.search.*;
- import org.apache.lucene.store.Directory;
- import org.apache.lucene.store.FSDirectory;
- import org.apache.lucene.util.Version;
- import org.wltea.analyzer.lucene.IKAnalyzer;
- import org.wltea.analyzer.lucene.IKSimilarity;
- /**
- * SearchLogic.java
- * @version 1.0
- * @createTime Lucene数据库检索
- */
- public class SearchLogic {
- private static Connection conn = null;
- private static Statement stmt = null;
- private static ResultSet rs = null;
- private String searchDir = "E:\\Test\\Index";
- private static File indexFile = null;
- private static Searcher searcher = null;
- private static Analyzer analyzer = null;
- /** 索引页面缓冲 */
- private int maxBufferedDocs = 500;
- /**
- * 获取数据库数据
- * @return ResultSet
- * @throws Exception
- */
- public List<SearchBean> getResult(String queryStr) throws Exception {
- List<SearchBean> result = null;
- conn = JdbcUtil.getConnection();
- if(conn == null) {
- throw new Exception("数据库连接失败!");
- }
- String sql = "select id, username, password, type from account";
- try {
- stmt = conn.createStatement();
- rs = stmt.executeQuery(sql);
- this.createIndex(rs); //给数据库创建索引,此处执行一次,不要每次运行都创建索引,以后数据有更新可以后台调用更新索引
- TopDocs topDocs = this.search(queryStr);
- ScoreDoc[] scoreDocs = topDocs.scoreDocs;
- result = this.addHits2List(scoreDocs);
- } catch(Exception e) {
- e.printStackTrace();
- throw new Exception("数据库查询sql出错! sql : " + sql);
- } finally {
- if(rs != null) rs.close();
- if(stmt != null) stmt.close();
- if(conn != null) conn.close();
- }
- return result;
- }
- /**
- * 为数据库检索数据创建索引
- * @param rs
- * @throws Exception
- */
- private void createIndex(ResultSet rs) throws Exception {
- Directory directory = null;
- IndexWriter indexWriter = null;
- try {
- indexFile = new File(searchDir);
- if(!indexFile.exists()) {
- indexFile.mkdir();
- }
- directory = FSDirectory.open(indexFile);
- analyzer = new IKAnalyzer();
- indexWriter = new IndexWriter(directory, analyzer, true, IndexWriter.MaxFieldLength.UNLIMITED);
- indexWriter.setMaxBufferedDocs(maxBufferedDocs);
- Document doc = null;
- while(rs.next()) {
- doc = new Document();
- Field id = new Field("id", String.valueOf(rs.getInt("id")), Field.Store.YES, Field.Index.NOT_ANALYZED, TermVector.NO);
- Field username = new Field("username", rs.getString("username") == null ? "" : rs.getString("username"), Field.Store.YES,Field.Index.ANALYZED, TermVector.NO);
- doc.add(id);
- doc.add(username);
- indexWriter.addDocument(doc);
- }
- indexWriter.optimize();
- indexWriter.close();
- } catch(Exception e) {
- e.printStackTrace();
- }
- }
- /**
- * 搜索索引
- * @param queryStr
- * @return
- * @throws Exception
- */
- private TopDocs search(String queryStr) throws Exception {
- if(searcher == null) {
- indexFile = new File(searchDir);
- searcher = new IndexSearcher(FSDirectory.open(indexFile));
- }
- searcher.setSimilarity(new IKSimilarity());
- QueryParser parser = new QueryParser(Version.LUCENE_30,"username",new IKAnalyzer());
- Query query = parser.parse(queryStr);
- TopDocs topDocs = searcher.search(query, searcher.maxDoc());
- return topDocs;
- }
- /**
- * 返回结果并添加到List中
- * @param scoreDocs
- * @return
- * @throws Exception
- */
- private List<SearchBean> addHits2List(ScoreDoc[] scoreDocs ) throws Exception {
- List<SearchBean> listBean = new ArrayList<SearchBean>();
- SearchBean bean = null;
- for(int i=0 ; i<scoreDocs.length; i++) {
- int docId = scoreDocs[i].doc;
- Document doc = searcher.doc(docId);
- bean = new SearchBean();
- bean.setId(doc.get("id"));
- bean.setUsername(doc.get("username"));
- listBean.add(bean);
- }
- return listBean;
- }
- public static void main(String[] args) {
- SearchLogic logic = new SearchLogic();
- try {
- Long startTime = System.currentTimeMillis();
- List<SearchBean> result = logic.getResult("商家");
- int i = 0;
- for(SearchBean bean : result) {
- if(i == 10)
- break;
- System.out.println("bean.name " + bean.getClass().getName() + " : bean.id " + bean.getId()+ " : bean.username " + bean.getUsername());
- i++;
- }
- System.out.println("searchBean.result.size : " + result.size());
- Long endTime = System.currentTimeMillis();
- System.out.println("查询所花费的时间为:" + (endTime-startTime)/1000);
- } catch (Exception e) {
- e.printStackTrace();
- System.out.println(e.getMessage());
- }
- }
- }
对了上面的类还用到了一个javabean类,如下:
- public class SearchBean {
- private String id;
- private String username;
- public String getId() {
- return id;
- }
- public void setId(String id) {
- this.id = id;
- }
- public String getUsername() {
- return username;
- }
- public void setUsername(String username) {
- this.username = username;
- }
- }
这些代码大部分都是我在网上找到的doc文档中复制粘贴而来,本着“拿来主义”,我对这些代码修改不大,经测试,这些代码能够正常运行。
写了几篇博客,对lucene的使用方式也越来越清楚,在这里也很有必要总结一下:
使用lucene包括两个步骤,分别是索引和搜索。
•索引过程如下:
? 创建一个IndexWriter用来写索引文件,它有几个参数,INDEX_DIR就是索引文件所存放的位置,Analyzer便是用来对文档进行词法分析和语言处理的。
? 创建一个Document代表我们要索引的文档。
? 将不同的Field加入到文档中。我们知道,一篇文档有多种信息,如题目,作者,修改时间,内容等。不同类型的信息用不同的Field来表示。
? IndexWriter调用函数addDocument将索引写到索引文件夹中。
•搜索过程如下:
? IndexReader将磁盘上的索引信息读入到内存,INDEX_DIR就是索引文件存放的位置。
? 创建IndexSearcher准备进行搜索。
? 创建Analyer用来对查询语句进行词法分析和语言处理。
? 创建QueryParser用来对查询语句进行语法分析。
? QueryParser调用parser进行语法分析,形成查询语法树,放到Query中。
? IndexSearcher调用search对查询语法树Query进行搜索,得到结果TopScoreDocCollector。
对了,必须说一下,上面的例子还用到了一个新的jar包IKAnalyzer.jar包,它是一个开源的中文分词器,如果不使用这个分词器,那么将无法解析中文,比如说我的第一篇关于Lucene的博客就无法解析中文字符串!
lucene索引并搜索mysql数据库[转]