首页 > 代码库 > OpenCV&&python_图像平滑(Smoothing Images)
OpenCV&&python_图像平滑(Smoothing Images)
Goals
- 学习用不同低通滤波方法模糊图像(Blur imagess with various low pass filter)
- 用用定制的滤波器处理图像(Apply custom-made filters to images (2D convolution))
高通滤波与低通滤波
images can be filtered with various low-pass filters (LPF), high-pass filters (HPF), etc. A LPF helps in removing noise, or blurring the image. A HPF filters helps in finding edges in an image.
cv2.filter2D()
OpenCV provides a function cv2.filter2D() to convolve卷积 a kernel(核) with an image. 例如:
定义一个5x5 averaging filter kernel
直接上代码:
import cv2import numpy as npfrom matplotlib import pyplot as plt#读图像img = cv2.imread(‘text.jpg‘)#核的定义kernel = np.ones((5,5),np.float32)/25dst = cv2.filter2D(img,-1,kernel)#输出plt.subplot(121),plt.imshow(img),plt.title(‘Original‘)plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(dst),plt.title(‘Averaging‘)plt.xticks([]), plt.yticks([])plt.show()
结果展示:
注释:
Python:
cv.
Filter2D
(src, dst, kernel, anchor=(-1, -1))
- src – input image.
- dst – output image of the same size and the same number of channels as
src
.
- kernel – convolution kernel (or rather a correlation kernel), a single-channel floating point matrix; if you want to apply different kernels to different channels, split the image into separate color planes using
split()
and process them individually. - anchor – anchor of the kernel that indicates the relative position of a filtered point within the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor is at the kernel center.
- delta – optional value added to the filtered pixels before storing them in
dst
. - borderType – pixel extrapolation method (see
borderInterpolate()
for details).
OpenCV&&python_图像平滑(Smoothing Images)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。