首页 > 代码库 > xgboost 自定义评价函数(metric)与目标函数

xgboost 自定义评价函数(metric)与目标函数

 

比赛得分公式如下:

技术分享

其中,P为Precision , R为 Recall。

 

 

GBDT训练基于验证集评价,此时会调用评价函数,XGBoost的best_iteration和best_score均是基于评价函数得出。

评价函数:

input: preds和dvalid,即为验证集和验证集上的预测值,

return  string 类型的名称 和一个flaot类型的fevalerror值表示评价值的大小,其是以error的形式定义,即当此值越大是认为模型效果越差。

1 from sklearn.metrics import confusion_matrix
2 def customedscore(preds, dtrain):
3     label = dtrain.get_label()
4     pred = [int(i>=0.5) for i in preds]
5     confusion_matrixs = confusion_matrix(label, pred)
6     recall =float(confusion_matrixs[0][0]) / float(confusion_matrixs[0][1]+confusion_matrixs[0][0])
7     precision = float(confusion_matrixs[0][0]) / float(confusion_matrixs[1][0]+confusion_matrixs[0][0])
8     F = 5*precision* recall/(2*precision+3*recall)*100
9     return FSCORE,float(F)

 应用:

 训练时要传入参数:feval = customedscore,

 1    params = { silent: 1,  objective: binary:logistic , gamma:0.1,
 2         min_child_weight:5,
 3         max_depth:5,
 4         lambda:10,
 5         subsample:0.7,
 6         colsample_bytree:0.7,
 7         colsample_bylevel:0.7,
 8         eta: 0.01,
 9         tree_method:exact}
10     model = xgb.train(params, trainsetall, num_round,verbose_eval=10, feval = customedscore,maximize=False)

 

 

自定义 目标函数,这个我没有具体使用

1 # user define objective function, given prediction, return gradient and second order gradient
2 # this is log likelihood loss
3 def logregobj(preds, dtrain):
4     labels = dtrain.get_label()
5     preds = 1.0 / (1.0 + np.exp(-preds))
6     grad = preds - labels
7     hess = preds * (1.0-preds)
8     return grad, hess
# training with customized objective, we can also do step by step training
# simply look at xgboost.py‘s implementation of train
bst = xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror)

 

 

参考:

https://github.com/dmlc/xgboost/blob/master/demo/guide-python/custom_objective.py

http://blog.csdn.net/lujiandong1/article/details/52791117

xgboost 自定义评价函数(metric)与目标函数