首页 > 代码库 > xgboost中如何自定义metric(python中)
xgboost中如何自定义metric(python中)
正好在参加携程的比赛,用的xgboost的算法,但携程比赛的测评函数比较奇怪,不是传统的那些,而是取precision≥0.97的情况下,recall的最大值。那无疑这个测评函数是要自己写的(官方没给),可是我怎么把它放进xgboost里呢?这样我设置silent=1时,我每一步都能看到train和eval上的结果。
起初以为在param里定义了就行,但屡屡报错,后来终于找到了方法。
首先是metric的写法(直接拿携程比赛那个来说吧):
def maxRecall(preds,dtrain): #preds是结果(概率值),dtrain是个带label的DMatrix labels=dtrain.get_label() #提取label preds=1-preds precision,recall,threshold=precision_recall_curve(labels,preds,pos_label=0) pr=pd.DataFrame({‘precision‘:precision,‘recall‘:recall}) return ‘Max Recall:‘,pr[pr.precision>=0.97].recall.max()
参数和轮数就按一般设置,然后watchlist不能少,不然就不会输出东西了,比如watchlist=[(xgb_train,‘train‘), (xgb_test,‘eval‘)]
最后就是xgb.train中的内容了,写成:
bst=xgb.train(param,xg_train,n_round,watchlist,feval=maxRecall,maximize=False)
就行了。feval就是你的metric,maximize要加上,虽然不知道具体有什么用……
xgboost中如何自定义metric(python中)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。