首页 > 代码库 > LeetCode 63. Unique Paths II Java

LeetCode 63. Unique Paths II Java

题目:

 

Follow up for "Unique Paths":

 

Now consider if some obstacles are added to the grids. How many unique paths would there be?

 

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

 

For example,

 

There is one obstacle in the middle of a 3x3 grid as illustrated below.

 

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

 

The total number of unique paths is 2.

 

Note: m and n will be at most 100.

 

题意:给出一个二维格子,其中值为1的点表示障碍点,要求求出从最左上角的点到最右下角的点有多少种走法。使用动态规划,对于其中一个点obstacleGrid[i][j](1<i<m,i<j<n),到该点的走法为d(obstacleGrid[i][j])=d(obstacleGrid[i-1][j])+d(obstacleGrid[i][j-1]),对于第一行和第一列,如果该点前面有障碍点,那么到到此点有0中方法,反之为1。遍历数组即可求解。

 

代码:

 

public class Solution {

	public int uniquePathsWithObstacles(int[][] obstacleGrid) {
		
		int m=obstacleGrid.length;	//行
		int n=0;		//列
		if(m!=0)
			n=obstacleGrid[0].length;

		
		int[][] A=new int[m][n];		//用户记录起点到当前点走法
		for(int i=0;i<m;i++){
			for(int j=0;j<n;j++){
				if(obstacleGrid[i][j]==1)		//如果一个点障碍点,则到该点的只有0中方法
					A[i][j]=0;
				else{
					if(i==0||j==0){		//如果是第一列或者第一行 ,若该点前面有障碍点,那么改点也是不可以达到的
						boolean obstracle=false;
						if(i==0){
							for(int k=0;k<j;k++){
								if(obstacleGrid[i][k]==1)
									obstracle=true;
							}
						}
						else if(j==0){
							for(int k=0;k<i;k++){
								if(obstacleGrid[k][j]==1)
									obstracle=true;
							}
						}
						if(obstracle)
							A[i][j]=0;
						else A[i][j]=1;
						
					}else A[i][j]=A[i-1][j]+A[i][j-1];
				}
			}
		}
		return A[m-1][n-1];
	}
}

 

  

 

LeetCode 63. Unique Paths II Java