首页 > 代码库 > 63. Unique Paths II

63. Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[  [0,0,0],  [0,1,0],  [0,0,0]]

The total number of unique paths is 2.

 1 class Solution { 2 public: 3     int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { 4         if(obstacleGrid.empty() || obstacleGrid[0].empty()){ 5             return 0; 6         } 7         int row = obstacleGrid.size(); 8         int col = obstacleGrid[0].size(); 9         10         int dp[row][col];11         12         dp[0][0] = (obstacleGrid[0][0] == 0 ? 1 : 0);13         14         for(int i = 1; i < row; i++){15             dp[i][0] = ((dp[i-1][0] == 1 && obstacleGrid[i][0] == 0)? 1 : 0);16         }17         18         for(int j = 1; j < col; j++){19             dp[0][j] = ((dp[0][j-1] == 1 && obstacleGrid[0][j] == 0)? 1: 0);20         }21         22         for(int i = 1 ; i < row; i++){23             for(int j = 1 ; j < col;j++){24                 if(obstacleGrid[i][j] == 1){25                     dp[i][j] = 0;26                 }else{27                     dp[i][j] = dp[i-1][j]+dp[i][j-1];28                 }29             }30         }31         32         return dp[row-1][col-1];33     }34 };

 

63. Unique Paths II