首页 > 代码库 > Unique Paths II
Unique Paths II
题目
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as
1
and0
respectively in the grid.For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]The total number of unique paths is
2
.Note: m and n will be at most 100.
方法
和上一题一样,只是增加了一些判断条件。public int uniquePathsWithObstacles(int[][] obstacleGrid) { if (obstacleGrid == null) { return 0; } int lenX = obstacleGrid.length; if (lenX == 0) { return 0; } int lenY = obstacleGrid[0].length; int[][] num = new int[lenX][lenY]; for (int i = 0; i < lenX; i++) { for (int j = 0; j < lenY; j++) { if (obstacleGrid[i][j] == 1) { obstacleGrid[i][j] = 0; } else { if (i == 0 && j == 0) { num[i][j] = 1; } else if (i == 0) { num[i][j] = num[i][j - 1]; } else if (j == 0) { num[i][j] = num[i - 1][j]; } else { num[i][j] = num[i - 1][j] + num[i][j - 1]; } } } } return num[lenX - 1][lenY - 1]; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。