首页 > 代码库 > Unique Paths II
Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0]]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
class Solution {public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { vector<vector<int> > grid(obstacleGrid.size(),vector<int>(obstacleGrid[0].size())); grid[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1; for(int i=1;i<grid.size();i++) grid[i][0]=obstacleGrid[i][0] == 1 ? 0 : grid[i-1][0]; for(int j=1;j<grid[0].size();j++) grid[0][j]=obstacleGrid[0][j]== 1 ? 0 : grid[0][j-1]; for(int i=1;i<grid.size();i++) for(int j=1;j<grid[i].size();j++) grid[i][j]=obstacleGrid[i][j]==1 ? 0 : grid[i][j-1]+grid[i-1][j]; return grid[grid.size()-1][grid[0].size()-1]; }};
Unique Paths II
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。