首页 > 代码库 > hdu 5091 Beam Cannon(线段树扫描线)
hdu 5091 Beam Cannon(线段树扫描线)
题目链接:hdu 5091 Beam Cannon
题目大意:给定N个点,现在要有一个W?H的矩形,问说最多能圈住多少个点。
解题思路:线段的扫描线,假设有点(x,y),那么(x,y)~(x+W,y+H)形成的矩形,以框的右下角落的位置是可以圈住(x,y)
点,所以N个点即为N个矩形,求覆盖的最大次数,扫描线裸题。
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn = 40005;
const int bw = 20000;
#define lson(x) ((x)<<1)
#define rson(x) (((x)<<1)|1)
int lc[maxn << 2], rc[maxn << 2], ad[maxn << 2], nd[maxn << 2];
inline void pushup(int u) {
nd[u] = max(nd[lson(u)], + nd[rson(u)]) + ad[u];
}
inline void maintain(int u, int v) {
ad[u] += v;
nd[u] += v;
}
void build(int u, int l, int r) {
lc[u] = l;
rc[u] = r;
ad[u] = nd[u] = 0;
if (l == r)
return;
int mid = (l + r) >> 1;
build(lson(u), l, mid);
build(rson(u), mid + 1, r);
pushup(u);
}
void modify(int u, int l, int r, int v) {
if (l <= lc[u] && rc[u] <= r) {
maintain(u, v);
return;
}
int mid = (lc[u] + rc[u]) >> 1;
if (l <= mid)
modify(lson(u), l, r, v);
if (r > mid)
modify(rson(u), l, r, v);
pushup(u);
}
int query(int u, int l, int r) {
if (l <= lc[u] && rc[u] <= r)
return nd[u];
int mid = (lc[u] + rc[u]) >> 1, ret = 0;
if (l <= mid)
ret = max(ret, query(lson(u), l, r));
if (r > mid)
ret = max(ret, query(rson(u), l, r));
pushup(u);
return ret;
}
struct Seg {
int x, l, r, w;
Seg(int x = 0, int l = 0, int r = 0, int w = 0) {
this->x = x;
this->l = l;
this->r = r;
this->w = w;
}
};
vector<Seg> G;
inline bool cmp (const Seg& a, const Seg& b) {
if (a.x != b.x)
return a.x < b.x;
return a.w < b.w;
}
int N, W, H;
void init () {
int x, y;
G.clear();
scanf("%d%d", &W, &H);
for (int i = 0; i < N; i++) {
scanf("%d%d", &x, &y);
G.push_back(Seg(x, y + bw, min(bw, y + H) + bw, 1));
G.push_back(Seg(x + W + 1, y + bw, min(bw, y + H) + bw, -1));
}
build(1, 0, bw * 2);
sort(G.begin(), G.end(), cmp);
}
int main () {
while (scanf("%d", &N) == 1 && N != -1) {
init();
int ans = 0;
for (int i = 0; i < G.size(); i++) {
modify(1, G[i].l, G[i].r, G[i].w);
ans = max(ans, nd[1]);
}
printf("%d\n", ans);
}
return 0;
}
hdu 5091 Beam Cannon(线段树扫描线)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。