首页 > 代码库 > URAL 1099. Work Scheduling 一般图匹配带花树
URAL 1099. Work Scheduling 一般图匹配带花树
一般图匹配带花树模版题:
将奇环缩成圈(Blossom),然后找增广路.....
1099. Work Scheduling
Time limit: 0.5 second
Memory limit: 64 MB
Memory limit: 64 MB
There is certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to scheduled in pairs, so that each pair guards at different night. The junkyard CEO ordered you to write a program which given the guards characteristics determines the maximum amount of scheduled guards (the rest will be fired). Please note that each guard can be scheduled with only one of his colleagues and no guard can work alone.
Input
The first line of the input contains one number N ≤ 222 which is the amount of night guards. Unlimited number of lines consisting of unordered pairs (i, j) follow, each such pair means that guard #i and guard #j can work together, because it is possible to find uniforms that suit both of them (The junkyard uses different parts of uniforms for different guards i.e. helmets, pants, jackets. It is impossible to put small helmet on a guard with a big head or big shoes on guard with small feet). The input ends with Eof.
Output
You should output one possible optimal assignment. On the first line of the output write the even number C, the amount of scheduled guards. Then output C/2 lines, each containing 2 integers (i, j) that denote that i and j will work together.
Sample
input | output |
---|---|
3 1 2 2 3 1 3 | 2 1 2 |
Problem Author: Jivko Ganev
Tags: graph theory
)Difficulty: 1356 Printable version Submit solution Discussion (51)
My submissions All submissions (15804) All accepted submissions (1687) Solutions rating (610)
My submissions All submissions (15804) All accepted submissions (1687) Solutions rating (610)
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> using namespace std; const int maxn=250; /*******************************************/ struct Edge { int to,next; }edge[maxn*maxn]; int Adj[maxn],Size; void init() { memset(Adj,-1,sizeof(Adj)); Size=0; } void add_edge(int u,int v) { edge[Size].to=v; edge[Size].next=Adj[u]; Adj[u]=Size++; } /*******************************************/ int n; int Match[maxn]; bool G[maxn][maxn]; int Start,Finish,NewBase; int Father[maxn],Base[maxn]; bool InQueue[maxn],InPath[maxn],InBlossom[maxn]; int Count; queue<int> q; int FindCommonAncestor(int u,int v) { memset(InPath,false,sizeof(InPath)); while(true) { u=Base[u]; InPath[u]=true; if(u==Start) break; u=Father[Match[u]]; } while(true) { v=Base[v]; if(InPath[v]) break; v=Father[Match[v]]; } return v; } void ResetTrace(int u) { int v; while(Base[u]!=NewBase) { v=Match[u]; InBlossom[Base[u]]=InBlossom[Base[v]]=true; u=Father[v]; if(Base[u]!=NewBase) Father[u]=v; } } void BlosomContract(int u,int v) { NewBase=FindCommonAncestor(u,v); memset(InBlossom,false,sizeof(InBlossom)); ResetTrace(u); ResetTrace(v); if(Base[u]!=NewBase) Father[u]=v; if(Base[v]!=NewBase) Father[v]=u; for(int tu=1;tu<=n;tu++) { if(InBlossom[Base[tu]]) { Base[tu]=NewBase; if(!InQueue[tu]) { q.push(tu); InQueue[tu]=true; } } } } void FindAugmentingPath() { memset(InQueue,false,sizeof(InQueue)); memset(Father,0,sizeof(Father)); for(int i=1;i<=n;i++) Base[i]=i; while(!q.empty()) q.pop(); q.push(Start); InQueue[Start]=true; Finish=0; while(!q.empty()) { int u=q.front(); //InQueue[u]=false; q.pop(); for(int i=Adj[u];~i;i=edge[i].next) { int v=edge[i].to; if((Base[u]!=Base[v])&&Match[u]!=v) { if(v==Start||(Match[v]>0&&Father[Match[v]]>0)) BlosomContract(u,v); else if(Father[v]==0) { Father[v]=u; if(Match[v]>0) { q.push(Match[v]); InQueue[Match[v]]=true; } else { Finish=v; return ; } } } } } } void AugmentPath() { int u,v,w; u=Finish; while(u>0) { v=Father[u]; w=Match[v]; Match[v]=u; Match[u]=v; u=w; } } void Edmonds() { memset(Match,0,sizeof(Match)); for(int u=1;u<=n;u++) { if(Match[u]==0) { Start=u; FindAugmentingPath(); if(Finish>0) AugmentPath(); } } } void PrintMatch() { Count=0; for(int i=1;i<=n;i++) { if(Match[i]) Count++; } printf("%d\n",Count); for(int u=1;u<=n;u++) { if(u<Match[u]) printf("%d %d\n",u,Match[u]); } } int main() { //freopen("data.in","r",stdin); while(scanf("%d",&n)!=EOF) { init(); memset(G,false,sizeof(G)); int u,v; while(scanf("%d%d",&u,&v)!=EOF) { if(G[u][v]==true) continue; G[u][v]=G[v][u]=true; add_edge(u,v); add_edge(v,u); } Edmonds(); PrintMatch(); } return 0; }
URAL 1099. Work Scheduling 一般图匹配带花树
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。