首页 > 代码库 > ios开发中的矩阵转换

ios开发中的矩阵转换

最近在研究CoreText看了很多的例子其中有很多地方不是特别理解所以上网收集了IOS矩阵的转换原理来记录下

本文转载自:http://blog.csdn.net/lamp_zy/article/details/8474818

CGAffineTransformMake(a,b,c,d,tx,ty) 

ad缩放bc旋转tx,ty位移,基础的2D矩阵

 公式

    x=ax+cy+tx
    y=bx+dy+ty

 

1.矩阵的基本知识:

struct CGAffineTransform

{
  CGFloat a, b, c, d;
  CGFloat tx, ty;
};

CGAffineTransform CGAffineTransformMake (CGFloat a,CGFloat b,CGFloat c,CGFloat d,CGFloat tx,CGFloat ty);

为了把二维图形的变化统一在一个坐标系里,引入了齐次坐标的概念,即把一个图形用一个三维矩阵表示,其中第三列总是(0,0,1),用来作为坐标系的标准。所以所有的变化都由前两列完成。

以上参数在矩阵中的表示为:

 |a    b    0|

 |c    d    0|

 |tx   ty   1|

 

运算原理:原坐标设为(X,Y,1);

                            |a    b    0|

       [X,Y,  1]      |c    d    0|     =     [aX + cY + tx   bX + dY + ty  1] ;

                            |tx    ty  1|

通过矩阵运算后的坐标[aX + cY + tx   bX + dY + ty  1],我们对比一下可知:

第一种:设a=d=1, b=c=0.  

[aX + cY + tx   bX + dY + ty  1] = [X  + tx  Y + ty  1];

可见,这个时候,坐标是按照向量(tx,ty)进行平移,其实这也就是函数

CGAffineTransform CGAffineMakeTranslation(CGFloat tx,CGFloat ty)的计算原理。

第二种:设b=c=tx=ty=0.  

[aX + cY + tx   bX + dY + ty  1] = [aX    dY   1];

可见,这个时候,坐标X按照a进行缩放,Y按照d进行缩放,a,d就是X,Y的比例系数,其实这也就是函数

CGAffineTransform CGAffineTransformMakeScale(CGFloat sx, CGFloat sy)的计算原理。a对应于sx,d对应于sy。

第三种:设tx=ty=0,a=cos?,b=sin?,c=-sin?,d=cos?。

[aX + cY + tx   bX + dY + ty  1] = [Xcos? - Ysin?    Xsin? + Ycos?  1] ;

可见,这个时候,?就是旋转的角度,逆时针为正,顺时针为负。其实这也就是函数

CGAffineTransform CGAffineTransformMakeRotation(CGFloat angle)的计算原理。angle即?的弧度表示。

ios开发中的矩阵转换