首页 > 代码库 > NEUOJ 1117: Ready to declare(单调队列)
NEUOJ 1117: Ready to declare(单调队列)
1117: Ready to declare
时间限制: 1 Sec 内存限制: 128 MB提交: 358 解决: 41
[提交][状态][讨论版]
题目描述
Finally, you find the most good-looking girl...
You are going to write a letter to her. But you are not convident to be better than other boys. So you think you need a good chance...
You have known that these days, she will meet N boys at all(N<=100000). The ith boy has a handsome value V[i](0<V[i]<10000). She will meet K(K<=N) boys at the same time, and when the first boy leave, the next boy join them. It is to say that she will meet first K boys in the list at first, then the first boy leave ,the k+1-th boy join. So she will meet boys N-K+1 times.
You must want to join she and them when these boys are not handsome, so you need to calculate each meet‘s the least handsome value and the most.
here is a sample when N=8,K=3
boys least most
[5 3 2] 1 1 10 2 3 25
5 [3 2 1] 1 10 2 3 13
5 3 [2 1 1] 10 2 3 12
5 3 2 [1 1 10] 2 3 110
5 3 2 1 [1 10 2] 3 110
5 3 2 1 1 [10 2 3] 210
输入
There are several test cases, each case contains two lines.
The first line is two number ,N K.
The second line has N number, the handsome value.
输出
Each case output two lines.The first line is each meet‘s min handsome value, the second line is each meet‘s max handsome value.
样例输入
8 3
5 3 2 1 1 10 2 3
样例输出
2 1 1 1 1 2
5 3 2 10 10 10
提示
来源
2011.12
虽然正解是单调队列,可是我用的是两个栈实现的队列水过的,存下代码,这种比单调队列支持的更多
/************************************************************************* > File Name: Euler.cpp > Author: acvcla > QQ: > Mail: acvcla@gmail.com > Created Time: 2014年10月30日 星期四 11时19分11秒 ************************************************************************/ #include<iostream> #include<cstring> #include<cstdio> using namespace std; const int maxn=1e5+5; int stack1[maxn],stack2[maxn],max2[maxn],max1,min2[maxn],min1; int top1,top2; void init(){ top1=top2=0; max1=max2[top2]=0; min1=min2[top2]=maxn; } int ans1[maxn],ans2[maxn]; void deque(){ if(top2>0){ stack2[--top2]; return ; } while(top1>0){ stack2[top2]=stack1[--top1]; max2[top2]=max(top2>0?max2[top2-1]:0,stack2[top2]); min2[top2]=min(top2>0?min2[top2-1]:maxn,stack2[top2]); top2++; } max1=0; min1=maxn; --top2; } int get_max_min(int x){ if(x)return max(max1,top2>0?max2[top2-1]:0); return min(min1,top2>0?min2[top2-1]:maxn); } void push(int x){ max1=max(x,max1); min1=min(x,min1); stack1[top1++]=x; } int main() { int n,k,x; while(~scanf("%d%d",&n,&k)){ init(); int t=0,cnt=0; for(int i=1;i<=n;i++){ scanf("%d",&x); push(x); ++cnt; if(cnt==k) { ans1[t]=get_max_min(0); //cout<<"sldl"<<endl; ans2[t++]=get_max_min(1); deque(); cnt--; } } for(int i=0;i<t;i++)printf("%d%c",ans1[i],i==t-1?'\n':' '); for(int i=0;i<t;i++)printf("%d%c",ans2[i],i==t-1?'\n':' '); } return 0; }
NEUOJ 1117: Ready to declare(单调队列)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。