首页 > 代码库 > [问题2014A11] 解答
[问题2014A11] 解答
[问题2014A11] 解答
我们需要利用以下关于幂等阵判定的结论,它是复旦高代书第 142 页的例 3.6.4:
结论 设 \(A\) 为 \(n\) 阶方阵, 则 \(A^2=A\) 当且仅当 \(\mathrm{r}(A)+\mathrm{r}(I_n-A)=n\).
由题中两个条件和上述结论可得
\[n=\mathrm{r}(A+B)+\mathrm{r}(I_n-(A+B))=\mathrm{r}(A)+\mathrm{r}(B)+\mathrm{r}(I_n-A-B).\cdots(1)\]
解法一 (利用分块初等变换)
构造如下分块对角阵, 并对其实施分块初等变换, 可得
\[\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ A & B & I_n-A-B \end{pmatrix}\to\begin{pmatrix} A & 0 & A \\ 0 & B & B \\ A & B & I_n \end{pmatrix}\]
\[\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ A & B & I_n \end{pmatrix}\to\begin{pmatrix} A-A^2 & -AB & 0 \\ -BA & B-B^2 & 0 \\ 0 & 0 & I_n \end{pmatrix}.\]
注意到分块初等变换不改变矩阵的秩, 故由 (1) 式可得 \(\mathrm{r}\begin{pmatrix} A-A^2 & -AB \\ -BA & B-B^2 \end{pmatrix}=0\), 从而我们有 \(A^2=A\), \(B^2=B\), \(AB=BA=0\).
解法二 (由张钧瑞同学提供,利用秩的不等式)
主要思路是反复利用秩的不等式 \(\mathrm{r}(A)+\mathrm{r}(B)\geq \mathrm{r}(A+B)\) (复旦高代书第 144 页习题 5(3)) 以及幂等阵判定的结论. 由 (1) 式可得
\[n\geq \mathrm{r}(A)+\mathrm{r}(I_n-A)\geq \mathrm{r}(I_n)=n,\]
所以上述不等式只能取等号, 从而 \(A\) 是幂等阵. 同理可证 \(B\) 也是幂等阵. 最后, 由 \((A+B)^2=A+B\), \(A^2=A\), \(B^2=B\) 可得 \(AB=BA=0\), 这是[问题2014A04] 的第一小题. \(\Box\)
[问题2014A11] 解答