首页 > 代码库 > [问题2014A03] 解答
[问题2014A03] 解答
[问题2014A03] 解答
注意到 \((A^*)^*\) 的第 (1,1) 元素是 \(A^*\) 的第 (1,1) 元素的代数余子式, 即为
\[\begin{vmatrix} A_{22} & A_{32} & \cdots & A_{n2} \\ A_{23} & A_{33} & \cdots & A_{n3} \\ \vdots & \vdots & \vdots & \vdots \\ A_{2n} & A_{3n} & \cdots & A_{nn} \end{vmatrix}.\]
因此我们可以更一般的证明如下结论: 若 \(n\geq 3\), 则 \((A^*)^*=|A|^{n-2}A\). 这是复旦高代教材第三版第 112 页的复习题 32, 其解答可以参考复旦高代白皮书第 43 页例 2.15. 当 \(A\) 是非异阵时, 结论很容易证明; 当 \(A\) 是奇异阵时, 可用相抵标准型或摄动法来处理. \(\Box\)
[问题2014A03] 解答
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。