首页 > 代码库 > [问题2014A03] 复旦高等代数 I(14级)每周一题(第五教学周)
[问题2014A03] 复旦高等代数 I(14级)每周一题(第五教学周)
[问题2014A03] 设 \(A=(a_{ij})\) 为 \(n\,(n\geq 3)\) 阶方阵,\(A_{ij}\) 为第 \((i,j)\) 元素 \(a_{ij}\) 在 \(|A|\) 中的代数余子式,证明:
\[\begin{vmatrix} A_{22} & A_{23} & \cdots & A_{2n} \\ A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{n2} & A_{n3} & \cdots & A_{nn} \end{vmatrix}=a_{11}|A|^{n-2}.\]
注 如果约定 \(|A|^0=1\),则上述结论对 \(n=2\) 也成立.
[问题2014A03] 复旦高等代数 I(14级)每周一题(第五教学周)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。