首页 > 代码库 > Machine Learn in Action(K-近邻算法)
Machine Learn in Action(K-近邻算法)
使用K-近邻算法将某点[0.6, 0.6]划分到某个类(A, B)中。
from numpy import * import operator def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] # 数组行数 diffMat = tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances ** 0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 # operator.itemgetter(1)根据iterable的第二个值域排序 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] if __name__ == ‘__main__‘: # 定义训练集 group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = [‘A‘, ‘A‘, ‘B‘, ‘B‘] print(classify0([0.6, 0.6], group, labels, 3))
Machine Learn in Action(K-近邻算法)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。