首页 > 代码库 > Root of AVL Tree
Root of AVL Tree
原题:
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5 88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7 88 70 61 96 120 90 65
Sample Output 2:
88
#include <iostream> #include <sstream> #include <string> using namespace std; template<typename T>class AVLTreeNode; template<typename T>AVLTreeNode<T>* SingleLeftRotation(AVLTreeNode<T>* A); template<typename T>AVLTreeNode<T>* SingleRightRotation(AVLTreeNode<T>* A); template<typename T>AVLTreeNode<T>* DoubleLeftRightRotation(AVLTreeNode<T>* A); template<typename T>AVLTreeNode<T>* DoubleRightLeftRotation(AVLTreeNode<T>* A); template<typename T>class AVLTreeNode { public: T Data; AVLTreeNode<T>* Left; AVLTreeNode<T>* Right; int Height; }; inline int Max(int a, int b) { return a > b ? a : b; } template<typename T>int GetHeight(AVLTreeNode<T>* A) { if(!A) return 0; return Max(GetHeight(A->Left), GetHeight(A->Right)) + 1; } template<typename T>AVLTreeNode<T>* AVL_Insertion(T x, AVLTreeNode<T>* t) { if(!t) { t = new AVLTreeNode<T>; t->Data = http://www.mamicode.com/x;>
Root of AVL Tree