首页 > 代码库 > 【DeepLearning】Exercise:Vectorization

【DeepLearning】Exercise:Vectorization

Exercise:Vectorization

习题的链接:Exercise:Vectorization

 

注意点:

MNIST图片的像素点已经经过归一化。

如果再使用Exercise:Sparse Autoencoder中的sampleIMAGES.m进行归一化,

将使得训练得到的可视化权值如下图:

技术分享

 

 

我的实现:

更改train.m的参数设置及训练样本选取

%% STEP 0: Here we provide the relevant parameters values that will%  allow your sparse autoencoder to get good filters; you do not need to %  change the parameters below.visibleSize = 28*28;   % number of input units hiddenSize = 196;     % number of hidden units sparsityParam = 0.1;   % desired average activation of the hidden units.                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",             %  in the lecture notes). lambda = 3e-3;     % weight decay parameter       beta = 3;            % weight of sparsity penalty term       %%======================================================================%% STEP 1: Implement sampleIMAGES%%  After implementing sampleIMAGES, the display_network command should%  display a random sample of 200 patches from the dataset% MNIST images have already been normalizedimages = loadMNISTImages(train-images.idx3-ubyte);patches = images(:,1:10000); %display_network(patches(:,randi(size(patches,2),200,1)),8);%  Obtain random parameters thetatheta = initializeParameters(hiddenSize, visibleSize);

 

训练得到的W1可视化:

技术分享

【DeepLearning】Exercise:Vectorization