首页 > 代码库 > [leetcode] Combination Sum

[leetcode] Combination Sum

Combination Sum

Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 2,3,6,7 and target 7
A solution set is: 
[7] 
[2, 2, 3] 

思路:

回溯算法。一个一个寻找所有可行解。最初的想法是当前和加上一个数字,递归一次与目标值进行比较,如果相等,就找到了一个,如果比目标值大,退出,如果小则继续。因为结果可以有重复元素,所以每次递归都必须从当前值继续。

这样也通过了,但是想想应该有更好地剪枝方法,于是更改了一个判断条件,如果目标值与当前和之差大于即将加上的元素,就直接退出,这样少了一次递归。可是结果并没有很明显的改变。应该有更好地剪枝方法,以后再想。

题解:

技术分享
class Solution {public:    vector<vector<int> > res;    vector<int> tmp;    void foo(vector<int> &candidates, int target, int sum, int index) {        if(sum==target) {            res.push_back(tmp);            return;        }        if(sum+candidates[index]>target)            return;        for(int i=index;i<candidates.size();i++) {            tmp.push_back(candidates[i]);            sum += candidates[i];            foo(candidates, target, sum, i);            sum -= candidates[i];            tmp.pop_back();        }    }    vector<vector<int> > combinationSum(vector<int> &candidates, int target) {        sort(candidates.begin(), candidates.end());        if(candidates[0]>target)            return res;        foo(candidates, target, 0, 0);        return res;    }};
View Code

后话:

从disuss中发现了有人用dp的算法做了一遍,大概看了一下没看懂,也放上来,以后和剪枝方法一起研究。

技术分享
class Solution {public:    vector<vector<int> > combinationSum(vector<int> &candidates, int target) {        vector< vector< vector<int> > > combinations(target + 1, vector<vector<int>>());        combinations[0].push_back(vector<int>());        for (auto& score : candidates)            for (int j = score; j <= target; j++)                if (combinations[j - score].size() > 0) {                    auto tmp = combinations[j - score];                    for (auto& s : tmp)                        s.push_back(score);                    combinations[j].insert(combinations[j].end(), tmp.begin(), tmp.end());                }        auto ret = combinations[target];        for (int i = 0; i < ret.size(); i++)            sort(ret[i].begin(), ret[i].end());        return ret;    }};
View Code

 

[leetcode] Combination Sum