首页 > 代码库 > poj3744之矩阵快速幂+概率DP
poj3744之矩阵快速幂+概率DP
Scout YYF I
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4410 | Accepted: 1151 |
Description
YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy‘s base. After overcoming a series difficulties, YYF is now at the start of enemy‘s famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.
Input
The input contains many test cases ended with EOF.
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.
Sample Input
1 0.5 2 2 0.5 2 4
Sample Output
0.5000000 0.2500000
/*分析:对于n个地雷s[1],s[2],s[3],s[4]...s[n] 假设s都是不递减的。 假设dp[i]表示从1到达i这个位置的概率 则: dp[s[1]-1]为1~s[1]-1的概率//s[1]不能到达 dp[s[2]-1]为1~s[2]-1也是1->s[1]-1->s[1]+1->s[2]-1的概率 由于最多只能跳两格 所以dp[s[i]+1]一定是从dp[s[i]-1]到达 然后从dp[s[i]+1]到达dp[s[i+1]-1];//这部分就可以用矩阵快速幂 另外根据公式dp[i]=p*dp[i-1]+(1-p)*dp[i-2]也可知从s[i]+1 => s[i+1]-1用矩阵快速幂求 构造初始矩阵: p 1-p * dp[i] = dp[i+1] 1 0 dp[i-1] dp[i] */ #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <algorithm> #include <map> #include <cmath> #include <iomanip> #define INF 99999999 typedef long long LL; using namespace std; const int MAX=10+10; const int N=2; int n,s[MAX]; double array[N][N],sum[N][N],p; void InitMatrix(){ array[0][0]=p; array[0][1]=1-p; array[1][0]=1; array[1][1]=0; for(int i=0;i<N;++i){ for(int j=0;j<N;++j)sum[i][j]=(i == j); } } void MatrixMult(double a[N][N],double b[N][N]){ double c[N][N]={0}; for(int i=0;i<N;++i){ for(int j=0;j<N;++j){ for(int k=0;k<N;++k){ c[i][j]+=a[i][k]*b[k][j]; } } } for(int i=0;i<N;++i)for(int j=0;j<N;++j)a[i][j]=c[i][j]; } double Matrix(int k){ if(k<0)return 0;//表示s[i-1]~s[i]之间无位置 InitMatrix();//初始化矩阵 while(k){//有k+1个位置,到达第k+1个位置所以是k次 if(k&1)MatrixMult(sum,array); MatrixMult(array,array); k>>=1; } return sum[0][0];//sum[0][0]*dp[1]+sum[0][1]*dp[0] } int main(){ while(~scanf("%d%lf",&n,&p)){ for(int i=1;i<=n;++i)scanf("%d",&s[i]); sort(s+1,s+1+n); double ans=Matrix(s[1]-2);//1~s[1]-1的概率 for(int i=2;i<=n;++i){ if(s[i] == s[i-1])continue; double temp=Matrix(s[i]-s[i-1]-2);//s[i-1]~s[i]之间有s[i]-s[i-1]-1个位置,需要走s[i]-s[i-1]-2次到达最后一个位置 ans=ans*(1-p)*temp;//从s[i-1]-1的位置跳两格到s[i-1]+1再到s[i]-1 } printf("%.7f\n",ans*(1-p));//在s[n]-1位置还需要跳两格才安全了 } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。