首页 > 代码库 > Hadoop mapreduce自定义排序WritableComparable

Hadoop mapreduce自定义排序WritableComparable

本文发表于本人博客

    今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区、排序、分组、规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始!

     说到排序我们可以查看下hadoop源码里面的WordCount例子中对LongWritable类型定义,它实现抽象接口WritableComparable,代码如下:

public interface WritableComparable<T> extends Writable, Comparable<T> {}public interface Writable {  void write(DataOutput out) throws IOException;  void readFields(DataInput in) throws IOException;}

其中Writable抽象接口定义了write以及readFields方法,分别是写入数据流以及读取数据流。而Comparable中又有compareTo方法定义比较。竟然hadoop的内置类型有比较大小功能,那么它使用这个内置类型作为map端输出的话是怎么样去排序的,这个问题我们先来查看下map任务类MapTask源代码,内部有内置MapOutputBuffer类,在spill accounting注释下面有个排序字段:

private final IndexedSorter sorter;

这个字段是由:

sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class", QuickSort.class, IndexedSorter.class), job);

可以看出,这个排序算法可以在配置文件中指定,不过默认是快速排序QuickSort。这个QuickSort内部有几个重要的方法:

public void sort(final IndexedSortable s, int p, int r,final Progressable rep);private static void sortInternal(final IndexedSortable s, int p, int r,final Progressable rep, int depth);

其中在传递参数IndexSortable的时候是用MapOutputBuffer当前来传递,因为这个MapOutputBuffer也继承IndexedSortable.这样在QuickSort排序sort中就会使用MapOutputBuffer类中的compare方法进行比较,可以看下面源代码:

    public int compare(int i, int j) {      final int ii = kvoffsets[i % kvoffsets.length];      final int ij = kvoffsets[j % kvoffsets.length];      // sort by partition      if (kvindices[ii + PARTITION] != kvindices[ij + PARTITION]) {        return kvindices[ii + PARTITION] - kvindices[ij + PARTITION];      }      // sort by key      return comparator.compare(kvbuffer,          kvindices[ii + KEYSTART],          kvindices[ii + VALSTART] - kvindices[ii + KEYSTART],          kvbuffer,          kvindices[ij + KEYSTART],          kvindices[ij + VALSTART] - kvindices[ij + KEYSTART]);    }

然而这个方法中comparator默认是由节点“mapred.output.key.comparator.class”决定,也可以看源码:

  public RawComparator getOutputKeyComparator() {    Class<? extends RawComparator> theClass = getClass("mapred.output.key.comparator.class",            null, RawComparator.class);    if (theClass != null)      return ReflectionUtils.newInstance(theClass, this);    return WritableComparator.get(getMapOutputKeyClass().asSubclass(WritableComparable.class));  }

就是这样把排序以及比较方法关联起来了!那现在我们可以按照LongWritable的思路实现自己的自定义类型并且读取、写入、比较。下面写写代码加深下记忆,既然是排序那我们准备下数据,如下有2列数据要求按照第一列升序,第二列降序排序:

1    21    13    03    22    21    2

先自定义类型SortAPI:

public class SortAPI implements WritableComparable<SortAPI> {    /**     * 第一列数据     */    public Long first;    /**     * 第二列数据     */    public Long second;        public SortAPI(){}    public SortAPI(long first,long second){        this.first = first;        this.second = second;    }    /**     * 排序就在这里当:this.first - o.first > 0 升序,小于0倒序     */    @Override    public int compareTo(SortAPI o) {        long mis = (this.first - o.first);        if(mis != 0 ){            return (int)mis;        }        else{            return (int)(this.second - o.second);        }    }    @Override    public void write(DataOutput out) throws IOException {        out.writeLong(first);        out.writeLong(second);    }    @Override    public void readFields(DataInput in) throws IOException {        this.first = in.readLong();        this.second = in.readLong();            }    @Override    public int hashCode() {        return this.first.hashCode() + this.second.hashCode();    }    @Override    public boolean equals(Object obj) {        if(obj instanceof SortAPI){            SortAPI o = (SortAPI)obj;            return this.first == o.first && this.second == o.second;        }        return false;    }    @Override    public String toString() {        return "first:" + this.first + "second:" + this.second;    }}

这类型重写compareTo(SortAPI o)、write(DataOutput out)、readFields(DataInput in),既然是有比较那么以前说的就一定要重写hashCode()、equals(Object obj)方法了,这点不要忘记!还需要主要在write方法以及readFields方法中读写是有顺序:先write什么字段就先read什么字段。其次这个compareTo(SortAPI o)方法中返回是整型大于0、0、以及小于0代表大于、等于、小于。至于怎么判断2行数据是不是相等,不相等怎么比较着逻辑可以慢慢看下。

下面写个自定义Mapper、Reducer类以及main函数:

public class MyMapper extends Mapper<LongWritable, Text, SortAPI, LongWritable> {            @Override    protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {        String[] splied = value.toString().split("\t");        try {            long first = Long.parseLong(splied[0]);            long second = Long.parseLong(splied[1]);            context.write(new SortAPI(first,second), new LongWritable(1));        } catch (Exception e) {            System.out.println(e.getMessage());        }    }}
public class MyReduce extends Reducer<SortAPI, LongWritable, LongWritable, LongWritable> {    @Override    protected void reduce(SortAPI key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {        context.write(new LongWritable(key.first), new LongWritable(key.second));    }    }
    static final String OUTPUT_DIR = "hdfs://hadoop-master:9000/sort/output/";    static final String INPUT_DIR = "hdfs://hadoop-master:9000/sort/input/test.txt";        public static void main(String[] args) throws Exception {        Configuration conf = new Configuration();        Job job = new Job(conf, Test.class.getSimpleName());                deleteOutputFile(OUTPUT_DIR);                //1设置输入目录        FileInputFormat.setInputPaths(job, INPUT_DIR);        //2设置输入格式化类        job.setInputFormatClass(TextInputFormat.class);        //3设置自定义Mapper以及键值类型        job.setMapperClass(MyMapper.class);        job.setMapOutputKeyClass(SortAPI.class);        job.setMapOutputValueClass(LongWritable.class);        //4分区        job.setPartitionerClass(HashPartitioner.class);        job.setNumReduceTasks(1);                //5排序分组        //6设置在一定Reduce以及键值类型        job.setReducerClass(MyReduce.class);        job.setOutputKeyClass(LongWritable.class);        job.setOutputValueClass(LongWritable.class);        //7设置输出目录        FileOutputFormat.setOutputPath(job, new Path(OUTPUT_DIR));        //8提交job        job.waitForCompletion(true);    }        static void deleteOutputFile(String path) throws Exception{        Configuration conf = new Configuration();        FileSystem fs = FileSystem.get(new URI(INPUT_DIR),conf);        if(fs.exists(new Path(path))){            fs.delete(new Path(path));        }    }

这样在eclipse下就可以直接运行查看结果:

1       11       22       23       03       2

这结果正确,那如果要求第一列倒叙第二列升序呢,怎么办,这只需要修改下compareTo(SortAPI o):

    @Override    public int compareTo(SortAPI o) {        long mis = (this.first - o.first) * -1 ;        if(mis != 0 ){            return (int)mis;        }        else{            return (int)(this.second - o.second);        }    }

这样保存在运行,结果:

3       03       22       21       11       2

也正确吧符合自己的这个要求。

留个小问题:这个compareTo(SortAPI o)方法在什么时候调用了,总共调用了几次?

这次先到这里。坚持记录点点滴滴!


Hadoop mapreduce自定义排序WritableComparable