首页 > 代码库 > Leetcode:Unique Binary Search Trees

Leetcode:Unique Binary Search Trees

Given n, how many structurally unique BST‘s (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST‘s.

   1         3     3      2      1    \       /     /      / \           3     2     1      1   3      2    /     /       \                    2     1         2                 3

分析:首先我们从分类的角度考虑,当BST的根节点分别是1,2,..n时对应的BST树的个数。当我们确定了BST的根节点k,那么以k为根节点的BST的个数等于左BST子树的个数乘以右BST子树的个数。还有一点值得注意的是对于给定的节点数BST的个数是一定的,根据这个我们可以做进一步的优化。代码如下:
class Solution {public:    int numTrees(int n) {        if(n == 0 || n == 1) return 1;        int result = 0;                for(int i = 1; i <= n/2; i++)            result += numTrees(i-1)*numTrees(n-i);                return (n%2 == 0)?(2*result):(pow(numTrees(n/2),2) + 2*result);    }};

此外,有这句"当我们确定了BST的根节点k,那么以k为根节点的BST的个数等于左BST子树的个数乘以右BST子树的个数”,我们可以用动态规划的方法解。递推公式可写为:

f(i) = sum(f(k-1)*f(i-k))其中k = 1,2,...i. 时间复杂度为O(n^2),空间复杂度为O(n)。代码如下:

class Solution {public:    int numTrees(int n) {        vector<int> f(n+1, 0);                f[0] = 1;        for(int i = 1; i <= n; i++)            for(int k = 1; k <= i; k++)                f[i] += f[k-1] * f[i-k];                return f[n];    }};

 

Leetcode:Unique Binary Search Trees