首页 > 代码库 > 324. Wiggle Sort II

324. Wiggle Sort II

Given an unsorted array nums, reorder it such that nums[0] < nums[1] > nums[2] < nums[3]....

Example:
(1) Given nums = [1, 5, 1, 1, 6, 4], one possible answer is [1, 4, 1, 5, 1, 6]. 
(2) Given nums = [1, 3, 2, 2, 3, 1], one possible answer is [2, 3, 1, 3, 1, 2].

Note:
You may assume all input has valid answer.

Follow Up:
Can you do it in O(n) time and/or in-place with O(1) extra space?

Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.

 

Let‘s say nums is [10,11,...,19]. Then after nth_element and ordinary partitioning, we might have this (15 is my median):

index:     0  1  2  3   4   5  6  7  8  9
number:   18 17 19 16  15  11 14 10 13 12

I rewire it so that the first spot has index 5, the second spot has index 0, etc, so that I might get this instead:

index:     5  0  6  1  7  2  8  3  9  4
number:   11 18 14 17 10 19 13 16 12 15

And 11 18 14 17 10 19 13 16 12 15 is perfectly wiggly. And the whole partitioning-to-wiggly-arrangement (everything after finding the median) only takes O(n) time and O(1) space.


If the above description is unclear, maybe this explicit listing helps:

Accessing A(0) actually accesses nums[1].
Accessing A(1) actually accesses nums[3].
Accessing A(2) actually accesses nums[5].
Accessing A(3) actually accesses nums[7].
Accessing A(4) actually accesses nums[9].
Accessing A(5) actually accesses nums[0].
Accessing A(6) actually accesses nums[2].
Accessing A(7) actually accesses nums[4].
Accessing A(8) actually accesses nums[6].
Accessing A(9) actually accesses nums[8].

不需要排序,只需要 partitioning. 正确 partition 的数组只
要按照这个顺序插入,都是正确的。

于是问题就分成了三个子问题:
怎么 partitioning
什么顺序穿插
如何 in-place

  public void wiggleSort(int[] nums) {
        int median = findKthLargest(nums, (nums.length + 1) / 2);
        int n = nums.length;
        int left = 0, i = 0, right = n - 1;
        while (i <= right) {
            if (nums[newIndex(i,n)] > median) {
                swap(nums, newIndex(left++,n), newIndex(i++,n));
            } else if (nums[newIndex(i,n)] < median) {
                swap(nums, newIndex(right--,n), newIndex(i,n));
            } else {
                i++;
            }
        }
    } 
    private int newIndex(int index, int n) {
        return (1 + 2*index) % (n | 1);
    }
    private findKthLargest(int[] nums, int k) {
        for ()
    }
}

  

A(i) = nums[(1+2*(i)) % (n|1)] -----------(n|1) 强行变奇数 

 

324. Wiggle Sort II