首页 > 代码库 > linux的中断子系统简介(汇编和hard irq部分)_ARM平台(S5PV210)
linux的中断子系统简介(汇编和hard irq部分)_ARM平台(S5PV210)
2011年9月份时候做的笔记, 当时阅读中断子系统的代码后做的一个PPT, 内核版本不记得了, 硬件平台是samsung 的S5PV210.
这部分主要是针对汇编和hard irq的部分, 在hard irq处理后的softirq的处理, 以及下半部的处理(tasklet/workqueue)都没有涉及.
Agenda
?Interrupts in ARM
?Important structs
?External interrupt resources in S5PV210
?Code flow
?Kernel API
?Interrupts in ARM
ARM CPU CORE 中只有两根中断引脚, 分别是IRQ和FIQ.
ARM CPU CORE 中只有两根中断引脚, 分别是IRQ和FIQ.
?IRQ
–Why chip can handle so many IRQS? ===> VIC
?FIQ
?Important structs
?Important structs
struct irq_desc <strong>irq_desc</strong>[NR_IRQS] __cacheline_aligned_in_smp = { [0 ... NR_IRQS-1] = { .status = IRQ_DISABLED, .chip = &no_irq_chip, .handle_irq = handle_bad_irq, .depth = 1, .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock), } }; //NR_IRQS = 393 in R70
irq_desc is a global struct describing all the interrupt lines in the system.
struct irq_desc { <strong> unsigned int irq;</strong> struct timer_rand_state *timer_rand_state; unsigned int *kstat_irqs; #ifdef CONFIG_INTR_REMAP struct irq_2_iommu *irq_2_iommu; #endif <strong> irq_flow_handler_t handle_irq; //high level irq-events handle struct irq_chip *chip;</strong> struct msi_desc *msi_desc; void *handler_data; void *chip_data; <strong> struct irqaction *action; /* IRQ action list */</strong> unsigned int status; /* IRQ status */ unsigned int depth; /* nested irq disables */ unsigned int wake_depth; /* nested wake enables */ unsigned int irq_count; /* For detecting broken IRQs */ unsigned long last_unhandled; /* Aging timer for unhandled count */ unsigned int irqs_unhandled; raw_spinlock_t lock; #ifdef CONFIG_SMP cpumask_var_t affinity; const struct cpumask *affinity_hint; unsigned int node; #ifdef CONFIG_GENERIC_PENDING_IRQ cpumask_var_t pending_mask; #endif #endif atomic_t threads_active; wait_queue_head_t wait_for_threads; #ifdef CONFIG_PROC_FS struct proc_dir_entry *dir; #endif const char *name; } ____cacheline_internodealigned_in_smp;
struct <strong>irq_chip</strong> { const char *name; unsigned int (*startup)(unsigned int irq); void (*shutdown)(unsigned int irq); void (*enable)(unsigned int irq); void (*disable)(unsigned int irq); void (*ack)(unsigned int irq); void (*mask)(unsigned int irq); void (*mask_ack)(unsigned int irq); void (*unmask)(unsigned int irq); void (*eoi)(unsigned int irq); void (*end)(unsigned int irq); int (*set_affinity)(unsigned int irq, const struct cpumask *dest); int (*retrigger)(unsigned int irq); int (*set_type)(unsigned int irq, unsigned int flow_type); int (*set_wake)(unsigned int irq, unsigned int on); void (*bus_lock)(unsigned int irq); void (*bus_sync_unlock)(unsigned int irq); /* Currently used only by UML, might disappear one day.*/ #ifdef CONFIG_IRQ_RELEASE_METHOD void (*release)(unsigned int irq, void *dev_id); #endif /* * For compatibility, ->typename is copied into ->name. * Will disappear. */ const char *typename; };
struct <strong>irqaction</strong> { <strong> irq_handler_t handler; // handler assigned by request_irq</strong> unsigned long flags; const char *name; void *dev_id; struct irqaction *next; int irq; struct proc_dir_entry *dir; irq_handler_t thread_fn; struct task_struct *thread; unsigned long thread_flags; };之间的关系图:
?External interrupt resources in S5PV210
?Code flow
首先可以查看系统中有哪些有效的中断以及相关的信息.
接下来, 中断发生后, 首先我们看到的是前面注册的那些vectors. 异常向量表的写法主要使用跳转指令B来进行. 因为异常向量表和异常处理代码块之间没有超过B指令要求的2^24=32MB, 仅仅相差0x200. 但是因为vertor_swi不是在这个文件中定义的, 所以, 只能用LDR指令来进行处理了.
user mode的处理
svc mode的处理
可以看到, 都调用了 asm_do_IRQ
然后进入 handle_level_irq
首先可以查看系统中有哪些有效的中断以及相关的信息.
# cat /proc/interrupts //只显示有相应的action的IRQ的信息 CPU0 IRQ_NR count desc->chip->name action->name 16: 43 s3c-uart s5pv210-uart 18: 59 s3c-uart s5pv210-uart 33: 1 s5p_vic_eint mmc1 36: 0 s5p_vic_eint a700_ts 37: 1 s5p_vic_eint aic3254 headset irq 38: 0 s5p_vic_eint keypad 39: 0 s5p_vic_eint keypad 40: 0 s5p_vic_eint keypad 41: 0 s5p_vic_eint keypad 42: 0 s5p_vic_eint keypad 43: 0 s5p_vic_eint keypad 45: 1 s5p_vic_eint hpd 46: 1 s5p_vic_eint USB wak up 50: 0 VIC s3c-pl330.0 51: 0 VIC s3c-pl330.1 52: 0 VIC s3c-pl330.2 58: 0 VIC System timer 59: 0 VIC s3c2410-wdt 61: 14772 VIC rtc-tick 78: 220 VIC s3c2440-i2c.0 83: 27985 VIC s3c2440-i2c.2 88: 1 VIC s3c-udc 90: 52662 VIC mmc0 92: 268 VIC mmc1 93: 0 VIC s3c-csis 97: 2582 VIC s3cfb, s3cfb 102: 0 VIC s3c-fimc1 103: 0 VIC s3c-fimc2 105: 0 VIC s3c-g2d 106: 747 VIC pvrsrvkm 107: 0 VIC s5p-tvout 108: 0 VIC s5p-tvout 109: 0 VIC s3c2440-i2c.1 110: 0 VIC s3c-mfc 111: 0 VIC s5p-tvout 130: 13 VIC mmc2 170: 0 s5p-eint Bq27520_INT Err: 0
首先是初始化的过程, IRQ init sequence:
start_kernel setup_arch early_trap_init early_irq_init //没做什么事 init_IRQ s5pv210_init_irq s5p_init_irq vic_init(irq_nr直接是从32开始的, 前面的目前看起来至少留给了timer和UART) s3c_init_vic_timer_irq s3c_init_uart_irqs其中的early_trap_init, 基本的思路就是, 对于有MMU的系统, 异常向量的虚拟地址被映射到0xFFFF0000, 所以, 真正的7个异常向量(__vectors_start~__vectors_end)是被拷贝到这个0xFFFF0000开始的地方了. 接着, 异常处理代码块(__stubs_start~__stubs_end)被拷贝到0xFFFF0200处.
void __init early_trap_init(void) { unsigned long vectors = CONFIG_VECTORS_BASE; //0xFFFF0000 extern char __stubs_start[], __stubs_end[]; extern char __vectors_start[], __vectors_end[]; extern char __kuser_helper_start[], __kuser_helper_end[]; int kuser_sz = __kuser_helper_end - __kuser_helper_start; /* * Copy the vectors, stubs and kuser helpers (in entry-armv.S) * into the vector page, mapped at 0xffff0000, and ensure these * are visible to the instruction stream. */ <strong> memcpy((void *)vectors, __vectors_start, __vectors_end - __vectors_start); memcpy((void *)vectors + 0x200, __stubs_start, __stubs_end - __stubs_start); memcpy((void *)vectors + 0x1000 - kuser_sz, __kuser_helper_start, kuser_sz);</strong> /* * Copy signal return handlers into the vector page, and * set sigreturn to be a pointer to these. */ memcpy((void *)KERN_SIGRETURN_CODE, sigreturn_codes, sizeof(sigreturn_codes)); memcpy((void *)KERN_RESTART_CODE, syscall_restart_code, sizeof(syscall_restart_code)); flush_icache_range(vectors, vectors + PAGE_SIZE); modify_domain(DOMAIN_USER, DOMAIN_CLIENT); }
接下来, 中断发生后, 首先我们看到的是前面注册的那些vectors. 异常向量表的写法主要使用跳转指令B来进行. 因为异常向量表和异常处理代码块之间没有超过B指令要求的2^24=32MB, 仅仅相差0x200. 但是因为vertor_swi不是在这个文件中定义的, 所以, 只能用LDR指令来进行处理了.
__vectors_start: ARM( swi SYS_ERROR0 ) THUMB( svc #0 ) THUMB( nop ) W(b) vector_und + stubs_offset W(ldr) pc, .LCvswi + stubs_offset W(b) vector_pabt + stubs_offset // prefetch abort W(b) vector_dabt + stubs_offset // data abort W(b) vector_addrexcptn + stubs_offset // W(b) vector_irq + stubs_offset //IRQ入口 W(b) vector_fiq + stubs_offset //FIQ .globl __vectors_end __vectors_end:
@@@ 中断处理程序的 stub vector_irq: @ 调整 LR_irq sub lr, lr, #4 @ 保存 R0, LR_irq(中断之前的 PC, 断点), SPSR_irq(中断之前的 CPSR) 到 irq模式的栈中 stmia sp, {r0, lr} @ save r0, lr mrs lr, spsr str lr, [sp, #8] @ save spsr @ SPSR 设置为 SVC模式 mrs r0, cpsr eor r0, r0, #(\mode ^ SVC_MODE) msr spsr_cxsf, r0 @ 根据中断前的模式跳转到相应的处理程序 @ lr是中断刚开始时的 SPSR,即被中断代码的 CPSR,其低 4位表示中断之前的模式 and lr, lr, #0x0f mov r0, sp ldr lr, [pc, lr, lsl #2] @ 跳转到相应模式的处理程序,模式变为 SVC(SPSR 拷贝到 CPSR ) movs pc, lr @ 跳转表,必须紧跟 ldr lr,[pc,lr,lsl #2]和 movs pc,lr 两条指令(ARM 流水线机制??) .long __irq_usr @ 0 (USR) .long __irq_invalid @ 1 (FIQ) .long __irq_invalid @ 2 (IRQ) .long __irq_svc @ 3 (SVC) .long __irq_invalid @ 4 .long __irq_invalid @ 5 .long __irq_invalid @ 6 (ABT) .long __irq_invalid @ 7 .long __irq_invalid @ 8 .long __irq_invalid @ 9 .long __irq_invalid @ a .long __irq_invalid @ b (UND) .long __irq_invalid @ c .long __irq_invalid @ d .long __irq_invalid @ e .long __irq_invalid @ f (SYS)
user mode的处理
@@@ USR模式中断入口 __irq_usr: @ 在内核栈中产生 include/asm-arm/ptrace.h中 pt_regs 定义的栈帧结构 sub sp, sp, #S_FRAME_SIZE stmib sp, {r1 - r12} ldmia r0, {r1 - r3} add r0, sp, #S_PC @ here for interlock avoidance mov r4, #-1 @ "" "" "" "" str r1, [sp] @ save the "real" r0 copied @ from the exception stack @ We are now ready to fill in the remaining blanks on the stack: @ r2 - lr_<exception>, already fixed up for correct return/restart @ r3 - spsr_<exception> @ r4 - orig_r0 (see pt_regs definition in ptrace.h) @ Also, separately save sp_usr and lr_usr stmia r0, {r2 - r4} stmdb r0, {sp, lr}^ @ Clear FP to mark the first stack frame zero_fp @ 把被中断任务的 preempt_count 增加 1 get_thread_info tsk #ifdef CONFIG_PREEMPT ldr r8, [tsk, #TI_PREEMPT] @ get preempt count add r7, r8, #1 @ increment it str r7, [tsk, #TI_PREEMPT] #endif<div><div>?@ 循环调用 asm_do_IRQ() </div><div>?1: get_irqnr_and_base r0, r6, r5, lr </div><div>? movne r1, sp </div><div>?@ routine called with r0 = irq number, r1 = struct pt_regs * </div><div>? adrne lr, 1b </div><div>? <span style="color:red;"><strong>bne asm_do_IRQ</strong></span> </div><div>? </div><div>?#ifdef CONFIG_PREEMPT </div><div>? ldr r0, [tsk, #TI_PREEMPT] </div><div>? str r8, [tsk, #TI_PREEMPT] </div><div>? teq r0, r7 </div><div>? strne r0, [r0, -r0] </div><div>?#endif </div><div>?@ 返回到 user 模式 </div><div>? mov why, #0 </div><div>?<strong><span style="color:#FF0000;"> b ret_to_user</span></strong></div></div>
svc mode的处理
@@@ SVC模式中断入口 __irq_svc: @ 在内核栈中产生 include/asm-arm/ptrace.h中 pt_regs 定义的栈帧结构 sub sp, sp, #S_FRAME_SIZE tst sp, #4 bicne sp, sp, #4 stmib sp, {r1 - r12} ldmia r0, {r1 - r3} add r5, sp, #S_SP @ here for interlock avoidance mov r4, #-1 @ "" "" "" "" add r0, sp, #S_FRAME_SIZE @ "" "" "" "" addne r0, r0, #4 str r1, [sp] @ save the "real" r0 copied from the exception stack mov r1, lr @ We are now ready to fill in the remaining blanks on the stack: @ r0 - sp_svc @ r1 - lr_svc @ r2 - lr_<exception>, already fixed up for correct return/restart @ r3 - spsr_<exception> @ r4 - orig_r0 (see pt_regs definition in ptrace.h) stmia r5, {r0 - r4} @ 把被中断任务的 preempt_count 增加 1 #ifdef CONFIG_PREEMPT get_thread_info tsk ldr r8, [tsk, #TI_PREEMPT] @ get preempt count add r7, r8, #1 @ increment it str r7, [tsk, #TI_PREEMPT] #endif @ 循环调用 asm-do_IRQ() 1: get_irqnr_and_base r0, r6, r5, lr movne r1, sp @ routine called with r0 = irq number, r1 = struct pt_regs * adrne lr, 1b <span style="color:#FF0000;"><strong> bne asm_do_IRQ </strong></span> @ 如果需要调度,调用 svc_preempt进行内核抢占 #ifdef CONFIG_PREEMPT ldr r0, [tsk, #TI_FLAGS] @ get flags tst r0, #_TIF_NEED_RESCHED blne svc_preempt preempt_return: ldr r0, [tsk, #TI_PREEMPT] @ read preempt value str r8, [tsk, #TI_PREEMPT] @ restore preempt count teq r0, r7 strne r0, [r0, -r0] @ bug() #endif @ 返回到内核空间 ldr r0, [sp, #S_PSR] @ irqs are already disabled msr spsr_cxsf, r0 ldmia sp, {r0 - pc}^ @ load r0 - pc, cpsr
可以看到, 都调用了 asm_do_IRQ
asmlinkage void __exception asm_do_IRQ(unsigned int irq, struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); <strong> irq_enter();</strong> /* * Some hardware gives randomly wrong interrupts. Rather * than crashing, do something sensible. */ if (unlikely(irq >= NR_IRQS)) { if (printk_ratelimit()) printk(KERN_WARNING "Bad IRQ%u\n", irq); ack_bad_irq(irq); } else { <span style="color:#FF0000;"><strong> generic_handle_irq(irq);</strong></span> } /* AT91 specific workaround */ irq_finish(irq); <strong> irq_exit();</strong> set_irq_regs(old_regs); }
static inline void generic_handle_irq(unsigned int irq) { generic_handle_irq_desc(irq, irq_to_desc(irq)); } static inline void generic_handle_irq_desc(unsigned int irq, struct irq_desc *desc) { #ifdef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ <strong> desc->handle_irq(irq, desc); // high level handle, take handle_level_irq for example</strong> #else if (likely(desc->handle_irq)) desc->handle_irq(irq, desc); else __do_IRQ(irq); #endif }
然后进入 handle_level_irq
Void handle_level_irq(unsigned int irq, struct irq_desc *desc) { struct irqaction *action; irqreturn_t action_ret; raw_spin_lock(&desc->lock); mask_ack_irq(desc, irq); if (unlikely(desc->status & IRQ_INPROGRESS)) goto out_unlock; desc->status &= ~(IRQ_REPLAY | IRQ_WAITING); kstat_incr_irqs_this_cpu(irq, desc); action = desc->action; if (unlikely(!action || (desc->status & IRQ_DISABLED))) goto out_unlock; desc->status |= IRQ_INPROGRESS; raw_spin_unlock(&desc->lock); <strong> action_ret = handle_IRQ_event(irq, action);</strong> if (!noirqdebug) note_interrupt(irq, desc, action_ret); raw_spin_lock(&desc->lock); desc->status &= ~IRQ_INPROGRESS; if (!(desc->status & (IRQ_DISABLED | IRQ_ONESHOT))) unmask_irq(desc, irq); out_unlock: raw_spin_unlock(&desc->lock); }然后是handle_IRQ_event, 这边调用了request_irq时候注册的那个handle.
irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action) { irqreturn_t ret, retval = IRQ_NONE; unsigned int status = 0; do { trace_irq_handler_entry(irq, action); <strong> ret = action->handler(irq, action->dev_id); // handle registered by request_irq</strong> trace_irq_handler_exit(irq, action, ret); switch (ret) { case IRQ_WAKE_THREAD: … /* Fall through to add to randomness */ case IRQ_HANDLED: status |= action->flags; break; default: break; } retval |= ret; action = action->next; } while (action); if (status & IRQF_SAMPLE_RANDOM) add_interrupt_randomness(irq); local_irq_disable(); return retval; }以图表示的话, 就是:
?Kernel API
int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) 参数: irq---中断通道号,取值范围为 0~NR_IRQS – 1 handler---中断处理程序,原型为 irq_return_t isr_func(int irq, void *dev_id) irq_flags---标志位 dev_name---名称,将会显示在/proc/interrupts中 dev_id---区分共享同一个中断通道的不同的处理程序 void free_irq(unsigned int irq, void *dev_id) 参数: irq---中断通道号,取值范围为 0~NR_IRQS – 1 dev_id---区分共享同一个中断通道的不同的处理程序时才需要用到.
int set_irq_chip(unsigned int irq, struct irq_chip *chip) 设置 chip int set_irq_chip_data(unsigned int irq, void *data) 设置 chip_data int set_irq_handle(unsigned int irq, irq_flow_handler_t handle) 设置 handle_irq int set_irq_data(unsigned int irq, void *data) 设置 handler_data int set_irq_type(unsigned int irq, unsigned int type) 设置指定通道的触发类型
Ryan: PPT完成于2011.9.15, blog完成于2015.1.4
linux的中断子系统简介(汇编和hard irq部分)_ARM平台(S5PV210)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。